
Bandit Overfitting in Offline Policy Learning

David Brandfonbrener William F. Whitney Rajesh Ranganath Joan Bruna
New York University

Abstract

We study the offline policy learning problem
in a contextual bandit framework. Specifi-
cally, we focus on the issue of overfitting which
is especially important in a modern context
where we often use overparameterized mod-
els that can interpolate the data. Our first
contribution is to introduce a regret decom-
position into approximation, estimation, and
bandit errors that emphasizes the distinction
between the policy learning and supervised
learning problems. The bandit error measures
the error from overfitting to the single action
observed at each context, which we call “ban-
dit overfitting”. Our second contribution is
to show both in theory and experiments how
bandit overfitting is different for policy-based
versus value-based algorithms when we use
overparameterized models. We find that ban-
dit overfitting can become a severe problem
for policy-based algorithms, but value-based
algorithms effectively reduce the policy learn-
ing problem to regression and thus avoid the
worst problems of bandit overfitting.

1 Introduction

In the offline policy learning problem, we are given a
dataset of context, action, reward tuples collected by
some behavior policy, and the goal is to learn a new
policy which maximizes the expected reward. The prob-
lem can represent many decision making applications.
For example, problems in recommender systems (Li
et al., 2010; Bottou et al., 2013), robotics (Pinto and
Gupta, 2016), and healthcare decision making (Prasad
et al., 2017; Raghu et al., 2017) can all be cast as offline
policy learning problems. In these domains it is often
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critical to be able to learn the policy offline without
deploying exploratory policies in the real world.

We focus on understanding the offline policy learning
problem better by focusing on the issue of overfitting.
Understanding overfitting is especially important in a
modern context where we often use overparameterized
models that are capable of interpolating the training
data. We show that there are important distinctions
in (1) how overfitting impacts policy learning versus
supervised learning and (2) how overfitting impacts
policy-based versus value-based algorithms.

To frame our discussion, we introduce a novel regret
decomposition into approximation, estimation, and
“bandit” errors. The bandit error captures the error
that is due to only observing the action selected by the
behavior policy at each point in the dataset. This de-
composition is conceptually useful because it allows us
to disentangle the the estimation error which captures
overfitting due to noise in the rewards from the bandit
error due to the actions. This gives us a notion of ban-
dit overfitting which extends the idea of “propensity
overfitting” from Swaminathan and Joachims (2015b);
Joachims et al. (2018).

Armed with this framework, we compare policy-based
and value-based algorithms in the overparameterized
setting. We show that policy optimization can suffer
from bandit overfitting where bandit error dominates
the regret, and can fail to recover the optimal policy
in the limit of infinite data with nonparametric mod-
els, even with the addition of constant baselines. In
contrast, value-based learning effectively reduces the
problem to regression where recent work demonstrates
that overparameterized regression generalizes well un-
der mild assumptions on the target function.

Finally, we experimentally confirm that the intuitions
from the theory hold beyond the strict settings of the
theory itself. Specifically, we look at neural network
models on toy problems, problems with real images as
contexts, and a simulated economic problem. We find
that indeed policy-based algorithms suffer from bandit
overfitting more than their value-based counterparts in
these overparameterized settings.
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2 Setup

2.1 Offline contextual bandit problem

First we will define the online contextual bandit prob-
lem (Langford and Zhang, 2008). Let the context
space X be infinite and the action space A be finite
with |A| = K < ∞. At each round, a context x ∈ X
and a full feedback reward vector r ∈ [rmin, rmax]K are
drawn from a joint distribution D. Note that r can be
dependent on x since they are jointly distributed. A
policy π maps contexts to distributions over actions,
π : X → P(A). An action a is sampled according
to π(a|x) and the reward on the round is r(a), the
component of the vector r corresponding to a. We
use “bandit feedback” to refer to only observing r(a).
This contrasts with the “full feedback” problem where
at each round the full vector of rewards r is revealed,
independent of the action.

In the offline setting we get finite dataset of N rounds
with a fixed behavior policy β. Then we denote the
dataset as S = {xi, ri, ai, pi}Ni=1 where pi is the ob-
served propensity pi = β(ai|xi). The tuples in the
datasets lie in X × [rmin, rmax]K ×A× [0, 1] and are
drawn i.i.d from the joint distribution induced by D
and β. From S we define the datasets SB for bandit
feedback and SF for full feedback:

SB = {(xi, ri(ai), ai, pi)}Ni=1, SF = {(xi, ri)}Ni=1.

The goal is to take in a dataset and produce a policy
π so as to maximize the value V (π) defined as

V (π) := Ex,r∼DEa∼π(·|x)[r(a)].

We will use π∗ to denote the policy that maximizes V .
Finally, define the Q function at a particular context,
action pair as

Q(x, a) := Er|x[r(a)].

2.2 Algorithms

Now that we have defined the problem, we define the
main families of algorithms that we will analyze. This
is not meant to be a comprehensive account of all
algorithms, but a broad strokes picture of the vanilla
versions of the most popular algorithms.

Supervised learning with full feedback. In a full
feedback problem, empirical value maximization (the
analog to standard empirical risk minimization) is de-
fined by maximizing the empirical value V̂F :

V̂F (π;SF ) :=
1

N

N∑
i=1

〈ri, π(·|xi)〉 (1)

πF := arg max
π∈Π

V̂F (π;SF ). (2)

Importance weighted policy optimization. In
the bandit problem, importance weighted policy opti-
mization directly optimizes the policy to maximize an
estimate of the value. Since we only observe the rewards
of the behavior policy, we use importance weighting to
get an unbiased value estimate to maximize. Explicitly:

V̂B(π;SB) :=
1

N

N∑
i=1

ri(ai)
π(ai|xi)
pi

(3)

πB := arg max
π∈Π

V̂B(π;SB). (4)

Note that this is the “vanilla” version of the algo-
rithm and modifications like regularizers, baselines,
and clipped importance weights have been proposed
(Bottou et al., 2013; Dudík et al., 2011; Joachims et al.,
2018; Strehl et al., 2010; Swaminathan and Joachims,
2015a,b). The most relevant modification for our anal-
ysis is the introduction of constant baselines (Williams,
1992; Joachims et al., 2018). Adding a baseline b mod-
ifies the algorithm as follows:

V̂B,b(π;SB) :=
1

N

N∑
i=1

(ri(ai)− b)
π(ai|xi)
pi

(5)

πB,b := arg max
π∈Π

V̂B,b(π;SB). (6)

This modification is discussed in Sections 5.2 and 6.2.

Value-based learning. Another simple algorithm is
to first learn theQ function and then use a greedy policy
with respect to this estimated Q function. Explicitly:

Q̂SB := arg min
f∈Q

N∑
i=1

(f(xi, ai)− ri(ai))2 (7)

πQ̂SB
(a|x) := 1

[
a = arg max

a′
Q̂SB (x, a′)

]
. (8)

The RL literature also often defines a class of model-
based algorithms, but in the contextual bandit problem
there are no state transitions so model-based algorithms
are equivalent to value-based algorithms.

3 Regret decomposition

In supervised learning, the standard decomposition
of the excess risk separates the approximation and
estimation error (Bottou and Bousquet, 2008). The
approximation error is due to our limited function
class and the estimation error is due to minimizing
the empirical risk rather than the true risk. Since the
full feedback policy learning problem is equivalent to
supervised learning, the same decomposition applies.
Formally, consider a full feedback algorithm AF which
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takes the dataset SF and produces a policy πF . Then

ES [V (π∗)− V (πF )]︸ ︷︷ ︸
regret

= V (π∗)− sup
π∈Π

V (π)︸ ︷︷ ︸
approximation error

+ ES [sup
π∈Π

V (π)− V (πF )]︸ ︷︷ ︸
estimation error

.

We can instead consider a bandit feedback algorithm
AB which takes the dataset SB and produces a policy
πB . To extend the above decomposition to the bandit
problem we add a new term, the bandit error, that
results from having access to SB rather than SF . Now
we can decompose the regret as:

ES [V (π∗)− V (πB)]︸ ︷︷ ︸
regret

= V (π∗)− sup
π∈Π

V (π)︸ ︷︷ ︸
approximation error

+ ES [sup
π∈Π

V (π)− V (πF )]︸ ︷︷ ︸
estimation error

+ES [V (πF )− V (πB)]︸ ︷︷ ︸
bandit error

.

Disentangling sources of error. The approxima-
tion error is the same quantity that we encounter in
the supervised learning problem, measuring how well
our function class can do. The estimation error mea-
sures the error due to overfitting on finite contexts
and noisy rewards. The bandit error accounts for
the error due to only observing the actions chosen
by the behavior policy. This is not quite analogous to
overfitting to noise in the rewards since stochasticity
in the actions is actually required to have the cover-
age of context-action pairs needed to learn a policy.
While the standard approximation-estimation decompo-
sition could be directly extended to the bandit problem,
our approximation-estimation-bandit decomposition is
more conceptually useful since it disentangles these two
types of error that will affect an algorithm.

When is bandit error positive? Usually, we think
about an error decomposition as having each term be
positive. This is not necessarily the case with our
decomposition, but we view this as a feature rather
than a bug. Intuitively, the bandit error term captures
the contribution of the actions selected by the behavior
policy. If the behavior policy is nearly optimal and
the rewards are highly stochastic, there may be more
signal in the actions selected by the behavior policy
than the observed rewards. Thus overfitting the actions
chosen by behavior policy can sometimes be beneficial,
causing the bandit error to be negative. The two terms
disentangle the approximation error (due to reward
noise) from bandit error (due to behavior actions).

4 Motivating example

Using the definitions and regret decomposition, in this
section we illustrate the problem that we call ban-
dit overfitting. Essentially, bandit overfitting happens
when a policy is able to maximize its objective by fitting
the actions taken by the behavior policy rather than
maximizing the rewards. This causes the bandit error
term to be large. We will show that bandit overfitting
is most pronounced in policy optimization since the
objective encourages the learned policy to imitate the
behavior policy whenever the rewards are positive.

The core issue can be seen in the following toy example,
illustrated in Figure 1. Take a bandit problem with
two actions (called 1 and 2) with constant rewards of
1 and 2 respectively. Let the context distribution be
uniform over the interval [-1,1], and the behavior policy
be uniform across the two actions at every context:

x ∼ U([−1, 1]), r|x = (1, 2), β(a|x) = 0.5 ∀ x, a.

Figure 1: Dots represent datapoints, colored by which
action was observed at that context. Blue dots have
reward of 1 and orange dots have reward 2. The policy
π is a neural net trained to perfectly maximize V̂B .

The true optimal policy π∗ chooses action 2 for all x
and V (π∗) = 2. But, a policy πB which copies the
observed actions by setting πB(ai|xi) = 1 for all i will
maximize V̂B despite having a lower true value. In
contrast, with full feedback the algorithm sees both
actions at every context, so V̂F is maximized by always
correctly choosing action 2.

To demonstrate this intuition precisely, assume that
exactly half of the observed points have action 1 and
half have action 2. Then

V̂B(πB ;SB) =
1

N

N∑
i=1

ri(ai)
πB(ai|xi)

1/2
=

2

N

N∑
i=1

ri(ai)

=
2

N

(
N

2
(1) +

N

2
(2)

)
= 3.
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On the other hand V̂B(π∗;SB) = 2.

In terms of true expected value, the policies that al-
ways choose action 2 will have value of 2: V (π∗) = 2
and V (πF ) ≈ 2. But choosing action 1 half the time
with πB means that we expect V (πB) ≈ 1.5. Thus, in
this problem, we expect the bandit error to be approx-
imately 0.5. This example shows how even without
noise in the rewards, policy optimization can suffer
from bandit overfitting due to the observed actions.

5 Theoretical results

In this section we present our main theoretical results
in the overparameterized setting which (1) illustrate
the differences between the supervised learning prob-
lem and the policy learning problem, and (2) show
that policy-based algorithms can have a serious prob-
lem with bandit overfitting, and (3) show that ban-
dit overfitting is less severe in value-based algorithms.
Throughout this section we will make the following
assumption of strict positivity.
Assumption 1 (Strict positivity). We have strict pos-
itivity if β(a|x) ≥ τ > 0 for all a, x. Thus, in any
dataset we will have pi = β(ai|xi) ≥ τ > 0.

There is important work that focuses on making suc-
cessful algorithms when τ is very small or even 0 by
making algorithmic modifications like clipping (Bot-
tou et al., 2013; Strehl et al., 2010; Swaminathan and
Joachims, 2015a) and behavior constraints (Fujimoto
et al., 2018). However, these issues are orthogonal to
the main contribution of our paper, so we focus on the
setting with strict positivity.

Before exploring what happens with overparameterized
models, it is important to recall the results for small
model classes in this setting (where small means ei-
ther finite or small VC dimension). With small model
classes, Strehl et al. (2010) and Chen and Jiang (2019)
show regret bounds for policy optimization and value-
based learning respectively. These bounds scale with

1√
N

and the logarithm of the size of the model class
as in supervised learning. They also depend on 1

τ ,
since with bandit feedback, the effective sample size
is smaller by a factor of τ . Value-based learning has
worse dependence on model misspecification since the
algorithm does not directly optimize an estimate of the
target objective. For completeness, we provide the full
formal results in Appendix F and explicitly bound each
term of the regret decomposition for each algorithm.

While these results are very clean, they are not useful
in the modern setting where overparameterized neu-
ral networks give superior empirical performance. As
illustrated empirically by Zhang et al. (2016) and the-
oretically by Nagarajan and Kolter (2019), modern

neural networks are sufficiently overparameterized to
interpolate even noisy labels and such uniform conver-
gence bounds are rendered vacuous.

In this paper, we focus on the large model classes that
arise in modern machine learning which can interpolate
the dataset. Formally, an interpolator is a function
approximator that will exactly optimize the objective
function at every datapoint in the training set. When
the objective L(θ) can be decomposed into a sum over
datapoints zi as 1

N

∑N
i=1 `(θ, zi), an interpolator can

find θ to exactly minimize every `(θ, zi).

5.1 Vanilla policy optimization

In this subsection we will show that bandit error can
become a severe problem under interpolation for policy
optimization without a proper baseline.

To understand how interpolators behave in this prob-
lem, we first need to understand what happens at the
observed contexts in the dataset. The following lemma
shows how to choose an optimal action at each observed
context. The proof is in Appendix A.
Lemma 1 (Interpolating action). Define

aB(i) =

{
ai ri(ai) > 0

any a 6= ai otherwise.

Let πB(a|xi) = 1[a = aB(i)], then

sup
π
V̂B(π) = V̂B(πB).

This tells us that the signal being provided by the
objective is not helping to recover the optimal pol-
icy. Rather, policy optimization is only copying the
observed action up to the sign of the observed reward.

For the remainder of this subsection, we focus on using
the Lemma to prove lower bounds on the regret of
interpolating policy optimization when we generalize
away from the data. To simplify the results, we consider
the case with two actions, K = 2. Note that since
we are proving lower bounds on performance, taking
K = 2 is the most difficult case. Adding more actions
will make problem instances harder which would make
proving lower bound easier.

Our first regret bound considers perhaps the simplest
interpolator, a nearest neighbor policy. We use this to
illustrate that even with noiseless rewards and infinite
data, bandit overfitting can prevent an interpolating
policy class from finding the optimal policy. Moreover,
we demonstrate the dependence on the behavior pol-
icy by incorporating the probability that the behavior
policy chooses an optimal action. As hinted at in the
example above, when the rewards are positive the pol-
icy is encouraged to clone the behavior and when the
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rewards are negative the policy will anti-clone the be-
havior. This tendency allows us to construct problems
much like the motivating example where nearest neigh-
bor policies will fail to recover the optimal policy since
they fit the behavior actions rather than the rewards.

Theorem 1 (One nearest neighbor). Assume K = 2,
noiseless rewards, and that π∗ is a piecewise continuous
function of x. Let ∆r = rmax− rmin. Let πB , πF be de-
fined by one nearest neighbor rules that interpolate their
respective objectives. Let p∗β = Px,aβ∼β|x,a∗∼π∗|x(aβ =
a∗) be the probability that the behavior policy chooses
the optimal action. Then there exist problem instances
where

lim sup
N→∞

ES [V (πF )− V (πB)] = ∆r max{p∗β , 1− p∗β}.

But, for all problem instances

lim sup
N→∞

ES [V (π∗)− V (πF )] = 0.

The proof is in Appendix A. This result shows that
using a nearest neighbor scheme to generalize based on
the signal provided by the bandit policy optimization
objective is not sufficient to learn an optimal policy.
It also shows that problems can penalize either good
behavior policies or bad behavior policies. We verify
this intuition empirically with neural network approxi-
mators in Section 6.

To move to general function classes, we will now present
a result that reduces lower bounding the bandit error of
policy optimization to lower bounding the gap between
noisy and noiseless classification. Since the result is a
statement about the objectives themselves, it applies
to all function classes including overparameterized ones.
In the overparameterized case, we expect noisy classi-
fication to be especially hard since the model will be
able to fit the noise in the labels. Any hope of general-
ization will fall back on the inductive biases since we
do not have the constraints of a small model class to
help ignore the noise. But empirically, this does not
happen as seen in Zhang et al. (2016) where neural
nets trained on noisy labels are not able to generalize.

Our theorem relies on taking any classification problem
and constructing a bandit problem with deterministic
rewards where the optimal policy is equivalent to the
optimal classifier. By choosing the behavior policy to
be a noisy version of the optimal policy, the bandit
policy optimization objective becomes an instance of
classification with noisy training labels. The proof can
be found in Appendix A.

Theorem 2 (Noisy classification reduction). Take any
noise level η < 1/2 and any binary classification prob-
lem C consisting of a distribution DC over X and a

labeling function yC : X → {−1, 1}. There exists an of-
fline contextual bandit problem B with noiseless rewards
such that

1. Maximizing V̂B in B is equivalent to minimizing
the 0/1 loss on a training set drawn from C where
labels are flipped with probability η.

2. Maximizing V̂F in B is equivalent to minimizing
the 0/1 loss on a training set drawn from C with
noiseless training labels.

This theorem tells us that even in noiseless reward
problems, finding an optimal policy by optimizing V̂B
is at least as hard as solving a classification problem
when only given access to noisy labels. However, if
we were given full feedback in that bandit problem,
finding the optimal policy by optimizing V̂F is as easy
as solving a classification problem with clean labels.

The important consequence of the theorem is that the
bandit error is lower bounded by the gap between the
risk of classifiers trained on noisy versus clean labels.
This applies to any function class, including those that
are overparameterized. In the overparameterized case,
any optimizer of the objective will exactly fit the noise
so any hope for generalization must come from induc-
tive bias of the learning algorithm. While we are not
familiar with any theoretical lower bounds on this prob-
lem, empirically models trained to interpolate noisy
labels do not perform well (Zhang et al., 2016).

In this subsection we have shown that the policy op-
timization objective provides a poor signal at each
datapoint independently. As a consequence, a nearest
neighbor policy cannot recover the optimal policy even
with noiseless rewards and infinite data. More generally,
for any overparameterized policy class to perform well
with policy optimization it must at least have a strong
enough inductive bias to be able to solve classification
problems while interpolating noisy labels.

5.2 Policy optimization with baselines

Now we show that the introduction of a constant base-
line as in Equation (5) can help, but not solve the issues
of bandit overfitting in interpolating models.

By incorporating such a baseline, the algorithm shifts
the rewards. Looking back at Lemma 1, shifting the
rewards means that an interpolating policy for V̂B,b
will choose ai whenever ri(ai)− b > 0. If the baseline
exactly ensures that the optimal action has positive
reward while non-optimal actions have negative reward,
then interpolating V̂B,b can indeed provide a signal to
match the optimal policy. However, as the following
theorem shows, introducing a constant baseline is in
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general not sufficient to prevent bandit overfitting. The
proof is similar to the proof without a baseline but
requires a slightly more complicated reward function
so that no baseline can perfectly identify the optimal
action.

Theorem 3 (Baselines). Assume K = 2, noiseless
rewards, and ∆r = rmax − rmin. Let πB,b be defined
by a one nearest neighbor rule to interpolate V̂B,b. Let
p∗β = Px,aβ∼β|x,a∗∼π∗|x(aβ = a∗) be the probability that
the behavior policy chooses the optimal action. Then
there exist problem instances such that for any choice
of baseline b and any ε > 0,

lim sup
N→∞

ES [V (πF )− V (πB,b)]

≥ 1

4
(∆r − ε) min{p∗β , 1− p∗β}.

This theorem can be compared directly with Theorem
1. Doing this we notice that the introduction of the
baseline reduced the worst case asymptotic regret by
a factor of 4 and improves the dependence on the
behavior policy. The dependence on the behavior policy
is improved since with an optimal baseline the effective
rewards are never strictly positive or strictly negative,
so the interpolating policy is not forced to clone or anti-
clone the behavior policy. While the baseline clearly
helps, it does not solve the problem.

While traditionally the use of baselines is motivated
as a method of variance reduction (Greensmith et al.,
2004), our work instead suggests that baselines can be
necessary for consistency, i.e. recovering the optimal
policy in the limit of infinite data.

An extension of baselines that is common in reinforce-
ment learning is to learn a context-dependent baseline
function, typically the expected value in a given context
(Sutton and Barto, 2018). While a full examination of
learned baselines is beyond the scope of this paper, we
discuss them at more length in Appendix B.

5.3 Value-based learning

While policy optimization can be sensitive to bandit
overfitting, we will show that value-based learning is not
when we make some structural assumptions on the true
Q function. The following theorem reduces bounding
the regret of value-based learning to bounding the
generalization of the learned Q function. This makes
work about generalization of interpolating regression
directly applicable.

Theorem 4 (Reduction to regression). Assuming
strict positivity, then with Q̂SB as defined in (7) then

V (π∗)− V (πQ̂) ≤ 2√
τ

√
Ex,a∼β [(Q(x, a)− Q̂SB (x, a))2].

A proof can be found in Appendix C. Similar results
are presented as intermediate results in Chen and Jiang
(2019); Munos and Szepesvári (2008). The implication
of this result that we want to emphasize is that any
generalization guarantees for overparameterized regres-
sion immediately become guarantees for value-based
learning in offline contextual bandits. The following
results demonstrate a few of these guarantees, which
all require some sort of regularity assumption on the
true Q function to bound the regression error.

Interpolating regression guarantees. The re-
sults of Cover (1968) imply the consistency of a one
nearest neighbor regressor when the rewards are noise-
less andQ is piecewise continuous. This contrasts nicely
with Theorem 1. The results of Bartlett et al. (2020)
give finite sample rates for overparameterized linear re-
gression by the minimum norm interpolator depending
on the covariance matrix of the data and assuming that
the true function is realizable. The results of Belkin
et al. (2019) imply that under smoothness assumptions
on Q, a particular singular kernel will interpolate the
data and have optimal non-parametric rates. After
applying our reduction, the rates are no longer optimal
for the policy learning problem. The results of Bach
(2017) show how choosing the minimum norm infinite
width neural network in a particular function space
can yield adaptive finite sample guarantees for many
types of underlying structure in the Q function.

What makes value learning different? The
above formal results show a gap between policy-based
and value-based learning. Now we attempt to provide
an intuitive explanation for this gap. The key difference
between parameterizing a policy and a Q function is
that the policy must produce a normalized distribution
over actions. When combined with interpolation and
bandit feedback, this normalization becomes a serious
liability. Formally, consider a single datapoint x, a, r(a)
in the case of positive rewards and interpolating policy
classes. Then, letting ea be the standard basis vector:

πB(·|x) = arg max
p∈∆K

r(a)

β(a|x)
p(a) = ea

Q̂SB (a|x) = arg min
q∈R

(r(a)− q)2 = r(a).

The behavior of Q̂SB at actions other than a is not
controlled by the behavior at a, while the behavior of
πB is highly dependent across actions. Fundamentally,
value-based learning attempts to model the outcomes
of counterfactual actions by generalizing from nearby
contexts for each action. On the other hand, policy
optimization generalizes both across actions via nor-
malization and across contexts via conditioning on x.
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6 Experiments

The above theory primarily considers interpolating
classes where the size of the class increases with the
data. However, the practical regime that we care about
is not exactly covered by the theory: a fixed finite
dataset and an overparameterized neural network ap-
proximator. In this section we see that the theoretical
results are borne out by neural nets.

6.1 Bandit overfitting and the behavior

First we consider the same toy problem with two ac-
tions from Section 4, where the actions have constant
rewards of 1 and 2 respectively. We use this to empiri-
cally confirm the results of Theorem 1 with a neural
network policy. We construct datasets by defining a
class of behavior policies by splitting the domain into
three sections and setting β(1|x) = pi when x is in
the ith section. We choose pi ∈ {0.05, 0.35, 0.65, 0.95}.
This gives us 64 policies of varying quality (values be-
tween 1.05 and 1.95) with strict positivity (τ ≥ 0.05).
For each behavior policy we sample a training set of
20 training points and report the value of the learned
policy on a held out test set of 1000 points. To param-
eterize the policies we use a one layer neural network
with width 512 as our function approximator and use a
5 dimensional encoding of the features in the frequency
domain. Full details are in Appendix D.

We consider two settings, one where the rewards are
all positive and one where the rewards are all negative.
Results are shown in Figure 2. We find that the value
of the policy learned by policy optimization clones the
behavior policy with positive rewards and anti-clones
the behavior with negative rewards, as the theory would
predict. These results confirm that the insights from
Theorem 1 transfer to neural network policies.

6.2 Bandit overfitting with baselines

Classification: CIFAR-10. In some problems,
coming up with a baseline that reduces bandit over-
fitting is simple. The most obvious of these is a clas-
sification problem where we know that rewards only
take two values and for every context only one action
gets higher reward. To compare to prior work, we will
consider a bandit version of CIFAR-10 (Krizhevsky,
2009) as in Joachims et al. (2018).

To turn CIFAR into an offline bandit problem we view
each possible label as an action and assign reward
of 2 for a correct label/action and 1 for an incorrect
label/action. We use 2 and 1 rather than 1 and 0 to
better illustrate the effect of baselines. We use two
different behavior policies to generate training data:
(1) the hand-crafted policy used in (Joachims et al.,

Figure 2: Value evaluated on the test set for policies
trained by policy optimization (PO), value-based learn-
ing (Q), and learning with full feedback (FF). Higher
is better.

2018) and (2) a uniformly random behavior policy. We
train Resnet-18 (He et al., 2016) models using Pytorch
(Paszke et al., 2019). As in Joachims et al. (2018)
we consider a hyperparameter search over constant
baselines. Full details about the training procedure are
in Appendix D and results are illustrated in Table 1.

HC Uniform FF
vanilla PO 0.846 0.792 -

PO w/baseline 0.095 0.271 -
Value-based 0.080 0.143 -
Supervised - - 0.058

Table 1: Regret of the policies learned by each differ-
ent algorithm on CIFAR-10 (lower is better, zero is
optimal). The columns show different datasets: hand
crafted behavior policy (HC), uniform behavior policy,
and full feedback (FF). The rows show different algo-
rithms: policy optimization with no baseline (vanilla
PO), policy optimization with a tuned baseline, value-
based learning, and supervised learning.

These results show that baselines can dramatically
help in classification problems, but that value-based
algorithms outperform policy optimization, especially
when the behavior policy is more stochastic. Note
that our results for policy optimization with a tuned
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baseline on the hand-crafted policy outperform those
reported by Joachims et al. (2018), but are still worse
than value-based learning.

Continuous reward: World3. To get a bandit
problem with richer structure than a classification prob-
lem, but where we still have access to counterfactual
outcomes, we consider a simulated experiment from
the whynot package (Miller et al., 2020). Specifically,
we consstruct a contextual bandit problem using the
World3 simulator which is a differential equation based
model with 12 state variables and 11 simulation pa-
rameters. While the exact details of the simulator are
unimportant, the reward is a continuous variable with
much richer structure than a classification problem.
Full details about the simulator and our experiment
can be found in Appendix D.

Briefly, we sample a training set of 1000 datapoints
using a uniformly random behavior policy and plot the
regret on a test set of 5000 points of policy optimization
across baselines that cover the range of the rewards. We
include flat lines value-based and full feedback (which
do not depend on this hyperparameter), as well as a
uniformly random policy.

Figure 3: Regret of policy optimization across different
choices of baseline (lower is better, zero is optimal).

This shows how baselines can provide some help against
bandit overfitting, but policy optimization is still sev-
eral times worse than value-based learning in this prob-
lem even with this hyperparameter tuning. When the
rewards vary more widely in scale and correlate with
the contexts, simple baselines are insufficient to combat
bandit overfitting.

7 Related work

Our concept of bandit error and the resulting phe-
nomena of “bandit overfitting” builds on the idea of
“propensity overfitting” raised by Swaminathan and
Joachims (2015b); Joachims et al. (2018). Specifically,
we provide a more formal definition of the problem

via our decomposition and consider the overparameter-
ized model setting. We also show how their proposed
solution of constant baselines can be deficient and con-
sider value-based learning algorithms as an alternative
(which they do not do in that work). See Appendix E
for a longer discussion of the connection to propensity
overfitting and an example that shows how the solution
of self-normalized estimates proposed by Swaminathan
and Joachims (2015b); Joachims et al. (2018) does not
solve the bandit overfitting problem.

The offline policy learning problem has been well stud-
ied under finite and small VC dimension model classes
in the bandit community (Strehl et al., 2010; Swami-
nathan and Joachims, 2015a,b; Joachims et al., 2018).
Similar work has also come out of the causal inference
community (Bottou et al., 2013; Athey and Wager,
2017; Kallus, 2018; Zhou et al., 2018). Related work
has also come out of the RL theory community for the
more general full RL problem (Munos and Szepesvári,
2008; Chen and Jiang, 2019). All these results rely on
having a small policy class and then applying standard
ideas of uniform convergence. In this work, we instead
consider a modern setting where our very large model
classes render such bounds vacuous and consider the
type of overfitting that emerges in this setting.

Our regret decomposition extends prior work from su-
pervised learning that decomposes excess risk into esti-
mation and approximation error (Vapnik, 1982; Bottou
and Bousquet, 2008) by adding the bandit error.

8 Discussion

We have examined overfitting in the offline contextual
bandit problem. We introduced a new regret decom-
position to separate the effects of estimation error and
bandit error and showed that policy-based algorithms
can be severely harmed by bandit error when using
interpolating models while value-based algorithms are
more robust in our setting.

It is important to emphasize that our results may not
apply beyond the setting we consider in this paper.
Explicitly, when there is no strict positivity, there is
unobserved confounding, there are very many or con-
tinuous actions, or the model classes are small and
misspecified then policy optimization may have lower
regret and lower bandit error than value-based learning.

In future work we hope to extend the ideas from the
bandit setting to the full RL problem with longer hori-
zon that requires temporal credit assignment. We
predict that bandit overfitting remains a significant
issue there. We also hope to leverage some of the theo-
retical understanding from this paper into algorithmic
improvements to combat bandit overfitting.
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Appendix

A Policy Optimization Proofs

A.1 Interpolating action

Lemma 1 (Interpolating action). Define

aB(i) =

{
ai ri(ai) > 0

any a 6= ai otherwise.

Let πB(a|xi) = 1[a = aB(i)], then

sup
π
V̂B(π) = V̂B(πB).

Proof. Expanding the definition of V̂B and using the definitions of πB and aB(i) from the theorem statement we
have

V̂B(πB) =
1

N

N∑
i=1

ri(ai)
πB(ai|xi)

pi
=

1

N

N∑
i=1

ri(ai)
1[ai = aB(i)]

pi
(9)

=
1

N

N∑
i=1

ri(ai)
1[ri(ai) > 0]

pi
=

1

N

N∑
i=1

sup
p∈[0,1]

ri(ai)
p

pi
(10)

= sup
π

1

N

N∑
i=1

ri(ai)
π(ai|xi)
pi

= sup
π
V̂B(π). (11)

A.2 Nearest Neighbor

Theorem 1 (One nearest neighbor). Assume K = 2, noiseless rewards, and that π∗ is a piecewise continuous
function of x. Let ∆r = rmax − rmin. Let πB , πF be defined by one nearest neighbor rules that interpolate their
respective objectives. Let p∗β = Px,aβ∼β|x,a∗∼π∗|x(aβ = a∗) be the probability that the behavior policy chooses the
optimal action. Then there exist problem instances where

lim sup
N→∞

ES [V (πF )− V (πB)] = ∆r max{p∗β , 1− p∗β}.

But, for all problem instances

lim sup
N→∞

ES [V (π∗)− V (πF )] = 0.

Proof. First we need to formally define the nearest neighbor rules that interpolate the objectives V̂B and V̂F .
These are simple in the case of two actions. Let i(x) be the index of the nearest neighbor to x in the dataset.
Then

πB(a|x) =

{
1
(
a = ai(x) and ri(x)(ai(x)) > 0

)
or
(
a 6= ai(x) and ri(x)(ai(x)) ≤ 0

)
0 otherwise.

(12)



Bandit Overfitting in Offline Policy Learning

This is saying that πB chooses the same action as the observed nearest neighbor if that reward was positive, and
the opposite action if that was negative. And for the full feedback we just choose the best action from the nearest
datapoint.

πF (a|x) =

{
1 a = arg maxa′ ri(x)(a

′)

0 otherwise.
(13)

Now, we will show that in the limit of infinite data, πF has no regret. Since the rewards are noiseless, the maximum
observed reward at a context is exactly the optimal action at that context. Thus, we precisely have a classification
problem with noiseless labels so that the Bayes risk is 0. Since we assumed that π∗ is piecewise continuous, the
class conditional densities (determined by the indicator of the argmax of Q) are piecewise continuous. This allows
us to apply the classic result of Cover and Hart (1967) that a nearest neighbor rule has asymptotic risk less
twice the Bayes risk, which in this case is zero. This means that asymptotically P (πF (a|x) 6= π∗(a|x)) = 0 which
immediately gives the second desired result of zero regret in the limit of infinite data under full feedback.

The proof of the first result of non-vanishing bandit error consists of constructing problem instances that achieves
this bandit error. We require two different constructions, one for p∗β < 1/2 and one for p∗β ≥ 1/2. We will present
the construction for p∗β < 1/2 (i.e. a bad behavior policy) which uses positive rewards. The construction for
p∗β ≥ 1/2 is analogous but with negative rewards.

To construct the example, take a bandit problem with two actions (called 1 and 2):

x ∼ U([−1, 1]), r|x = (1, 1 + ∆r), β(2|x) = p∗β ∀ x, a

The true optimal policy has π∗(2|x) = 1 for all x and V (π∗) = 1 + ∆r. The policy with full feedback πF is to
always choose action 2, since every observation will show that action 2 is better.

Now we note that since rewards are always positive, we can simplify the definition of πB as

πB(a|x) = 1[a = ai(x)]. (14)

Then we have that

V (πF )− V (πB) = Ex[Ea∼πF |x[Q(x, a)]− Ea∼πB |x[Q(x, a)]] (15)
= Ex[∆r + 1− (πB(1|x) + πB(2|x)(∆r + 1))]] (16)
= ∆r + 1− Ex[1[ai(x) = 1] + (∆r + 1)1[ai(x) = 2]] (17)

Taking expectation over S we get

ES [V (πF )− V (πB)] = ES [∆r + 1− Ex[1[ai(x) = 1] + (∆r + 1)1[ai(x) = 2]]] (18)
= ∆r + 1− Ex[PS(ai(x) = 1) + (∆r + 1)PS(ai(x) = 2)]] (19)
= ∆r + 1− Ex[(1− p∗β) + (∆r + 1)p∗β ]] (20)

= (1− p∗β)∆r (21)

This construction did not depend on the size of the dataset, so it is even true as the number of datapoints tends
to infinity. The analogous construction for p∗β ≥ 1/2 gives bandit error of p∗β∆r and we get the result by just
choosing the worse larger bandit error depending on p∗β .

A.3 Noisy classification

Theorem 2 (Noisy classification reduction). Take any noise level η < 1/2 and any binary classification problem
C consisting of a distribution DC over X and a labeling function yC : X → {−1, 1}. There exists an offline
contextual bandit problem B with noiseless rewards such that

1. Maximizing V̂B in B is equivalent to minimizing the 0/1 loss on a training set drawn from C where labels are
flipped with probability η.
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2. Maximizing V̂F in B is equivalent to minimizing the 0/1 loss on a training set drawn from C with noiseless
training labels.

Proof. First we will construct the bandit problem B with two actions corresponding to the classification problem
C. For any constant cr > 0 we define B by

x ∼ DC , r|x =

{
cr(1− η, η) yC(x) = 1

cr(η, 1− η) yC(x) = −1
, β(1|x) =

{
1− η yC(x) = 1

η yC(x) = −1
(22)

Now we will show that in this problem, V̂B is equivalent to the 0/1 loss for C with noisy labels. To do this first
note that by construction, for x with yC(x) = 1 we have r(1)|x

β(1|x) = cr(1−η)
1−η = cr and

r(2)|x
β(2|x) = crη

η = cr, and similarly

for x with yC(x) = −1 we have r(1)|x
β(1|x) = crη

η = cr and r(2)|x
β(2|x) = cr(1−η)

1−η = cr.

V̂B(π) =
1

N

N∑
i=1

ri(ai)
π(ai|xi)
β(ai|xi)

=
1

N

N∑
i=1

ri(ai)

β(ai|xi)
π(ai|xi) (23)

=
cr
N

N∑
i=1

π(ai|xi) (24)

This is equivalent to 0/1 loss with noisy labels since β generates ai according to yC where the label is flipped with
probability η.

Now we will show that V̂F is equivalent to the 0/1 loss for C with clean labels. Note that by construction
r(a)|x = crη + π∗(a|x)cr(1− 2η). So,

V̂F (π) =
1

N

N∑
i=1

〈ri, π(·|xi)〉 =
cr
N

N∑
i=1

〈η1 + (1− 2η)π∗(·|xi), π(·|xi)〉 (25)

=
crη

N
+
cr(1− 2η)

N

N∑
i=1

〈π∗(·|xi), π(·|xi)〉 (26)

This is equivalent to 0/1 loss with noisy labels since π∗ exactly corresponds to yC .

A.4 Baselines

Theorem 3 (Baselines). Assume K = 2, noiseless rewards, and ∆r = rmax − rmin. Let πB,b be defined by a one
nearest neighbor rule to interpolate V̂B,b. Let p∗β = Px,aβ∼β|x,a∗∼π∗|x(aβ = a∗) be the probability that the behavior
policy chooses the optimal action. Then there exist problem instances such that for any choice of baseline b and
any ε > 0,

lim sup
N→∞

ES [V (πF )− V (πB,b)]

≥ 1

4
(∆r − ε) min{p∗β , 1− p∗β}.

Proof. The proof consists of a construction of the hard problem instances. The hard problems look much like the
hard problem above, except we modify the reward function so that no baseline can completely separate the two
actions.

To construct the example, take any ε > 0 and define a bandit problem with two actions (called 1 and 2):

x ∼ U([−1, 1]), r|x =

{
(1, 1 + ∆r−ε

2 ) x < 0

(1 + ∆r+ε
2 , 1 + ∆r) x ≥ 0

, β(2|x) = p∗β ∀ x, a

The true optimal policy has π∗(2|x) = 1 for all x and V (π∗) = 1 + ∆r. The policy with full feedback πF is to
always choose action 2, since every observation will show that action 2 is better.
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We will refer to ri(ai) − b as the “effective reward” at datapoint i. As a direct consequence of Theorem 1 we
get that conditioned on x falling within some interval I in [−1, 1] where the effective rewards are constant and
strictly greater than zero, we will have bandit error of |I|2 (r(2)− r(1))p∗β while if the effective rewards are strictly
negative we will have bandit error of |I|2 (r(2)− r(1))(1− p∗β).

Since the nearest neighbor classifier in a two action problem will strictly depend of the sign of the effective reward,
there are 5 cases to consider for the baseline: (1) b < 1, (2) 1 ≤ b < 1 + ∆r−ε

2 , (3) 1 + ∆r−ε
2 ≤ b < 1 + ∆r+ε

2 , (4)
1 + ∆r+ε

2 ≤ b < 1 + ∆r, and (5) 1 + ∆r ≤ b. Note also that the reward function forces us to consider two intervals
I1 = [−1, 0) and I2 = [0, 1], each of measure 1 under the distribution over x. We will show that in the best case
we can achieve the bound in the theorem statement.

Case 1 (b < 1): The effective rewards are strictly positive always. Thus the bandit error will be the sum of the
error on the intervals I1 and I2. This is 1

2 (∆r−ε
2 )p∗β + 1

2 (∆r−ε
2 )p∗β = 1

2 (∆r − ε)p∗β .

Case 2 (1 ≤ b < 1 + ∆r−ε
2 ): The effective rewards are properly split on I1 and strictly positive on I2. Thus the

bandit error will be 0 + 1
2 (∆r−ε

2 )p∗β = 1
4 (∆r − ε)p∗β .

Case 3 (1 + ∆r−ε
2 ≤ b < 1 + ∆r+ε

2 ): The effective rewards are negative on I1 and positive on I2. Thus the bandit
error will be 1

2 (∆r−ε
2 )(1− p∗β) + 1

2 (∆r−ε
2 )p∗β = 1

4 (∆r − ε).

Case 4 (1 + ∆r+ε
2 ≤ b < 1 + ∆r): The effective rewards are negative on I1 and properly split on I2. Thus the

bandit error will be 1
2 (∆r−ε

2 )(1− p∗β) + 0 = 1
4 (∆r − ε)(1− p∗β).

Case 5 (1 + ∆r ≤ b): The effective rewards are always negative. Thus the bandit error will be 1
2 (∆r−ε

2 )(1− p∗β) +
1
2 (∆r−ε

2 )(1− p∗β) = 1
2 (∆r − ε)(1− p∗β).

Looking back, the best baseline is either case 2 or case 4, so under any baseline the bandit error is at least
1
4 (∆r − ε) min{p∗β , 1− p∗β}. This construction did not depend on the size of the dataset, so it is even true as the
number of datapoints tends to infinity.

B Discussion of context-dependent baselines

An extension of the idea of baselines that is common is reinforcement learning is to learn a context-dependent
baseline function b : X → R which is usually an estimate of the value function (Sutton and Barto, 2018). Then,
looking back at Lemma 1, shifting the reward will mean that an interpolating policy for V̂B,b will instead choose
ai whenever ri(ai)− b(xi) > 0.

This analysis suggests that a context-dependent baseline prevents bandit overfitting whenever the following
property holds at a context x: r(a) > b(x) for the optimal a and r(a) ≤ b(x) for all other a (where r is conditioned
on x). We will say that such a baseline picks out the optimal action at that context. If a baseline picks out the
optimal action at every context, then there would be no issue with irreducible bandit overfitting, but learning such
a baseline essentially requires solving the problem by learning a Q function. This makes it unclear whether such
a strategy is fundamentally solving the problem or just dressing value-base learning up as policy optimization.

There are special cases (like classification problems with bandit feedback) where the reward structure is known in
advance and makes finding a baseline easy. In these special cases learning a baseline that picks out the optimal
action everywhere may be much easier than learning the Q function.

Finally, while it is beyond the scope of this paper, we hope to expand upon this insight that a baseline ought to
pick out the optimal action in future work.

C Value-based learning

Theorem 4 (Reduction to regression). Assuming strict positivity, then with Q̂SB as defined in (7) then

V (π∗)− V (πQ̂) ≤ 2√
τ

√
Ex,a∼β [(Q(x, a)− Q̂SB (x, a))2].

Proof. The proof follows directly from linking the subsequent lemmas with π̂ = πQ̂SB
and Π be the set of all
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policies in Lemma 2.

Lemma 2 (Mismatch: from MSE to Regret). Assume strict positivity. Let π̂ be the greedy policy with respect to
some Q̂ and let Π be any class of policies to compete against, which contains π̂. Then

sup
π∈Π

V (π)− V (π̂) ≤ 2
√

sup
π∈Π

Ex,a∼D,π[(Q(x, a)− Q̂(x, a))2] (27)

Proof. We can expand the definition of regret and then add and subtract and apply a few inequalities. Let π̄ be
the policy in Π which maximizes V . Then

sup
π∈Π

V (π)− V (π̂) = Ex
[
Ea∼π̄|x[Q(x, a)]− Ea∼π̂|x[Q(x, a)]

]
(28)

= Ex
[
Ea∼π̄|x[Q(x, a)]− Ea∼π̂|x[Q̂(x, a)] + Ea∼π̂|x[Q̂(x, a)]− Ea∼π̂|x[Q(x, a)]

]
(29)

≤ Ex
[
Ea∼π̄|x[|Q(x, a)− Q̂(x, a)|] + Ea∼π̂|x[|Q(x, a)− Q̂(x, a)|]

]
(30)

≤
√
ExEa∼π̄|x[(Q(x, a)− Q̂(x, a))2] +

√
ExEa∼π̂|x[(Q(x, a)− Q̂(x, a))2] (31)

≤ 2
√

sup
π∈Π

Ex
[
Ea∼π|x[(Q(x, a)− Q̂(x, a))2]

]
(32)

The first inequality holds since π̂ maximizes Q̂ and by using the definition of absolute value, the second by Jensen,
and the third by introducing the supremum.

Lemma 3 (Transfer: from β to π). Assume strict positivity and take any Q-function Q̂ and any policy π, then

Ex,a∼D,π[Q(x, a)− Q̂(x, a))2] <
1

τ

(
Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2]

)
. (33)

Proof. Let π be any policy. Then

ExEa∼π|x[(Q(x, a)− Q̂(x, a))2] =

∫
x

p(x)
∑
a

π(a|x)(Q(x, a)− Q̂(x, a))2dx (34)

=

∫
x

∑
a

π(a|x)
β(a|x)

β(a|x)
p(x)(Q(x, a)− Q̂(x, a))2dx (35)

<
1

τ

∫
x

∑
a

β(a|x)p(x)(Q(x, a)− Q̂(x, a))2dx (36)

=
1

τ
Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2] (37)

where we use a multiply and divide trick and apply the definition of strict positivity to ensure that π(a|x)
β(a|x) <

1
τ .

D Experiments

D.1 Bandit overfitting and the behavior policy in a toy problem

Data. Data is generated according to:

x ∼ U([−1, 1]), r|x = (1, 2), a ∼ β(·|x)

Where we consider 64 behavior policies for β as defined in the main text. Formally, let p1, p2, p3 be probabilities
in [0.05, 0.35, 0.65, 0.95], then define

βp1,p2,p3(1|x) :=


p1 x ∈ [−1,−1/3]

p2 x ∈ (−1/3, 1/3)

p3 x ∈ [1/3, 1].

(38)
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We consider all possible such behavior policies. For each policy we draw a training set of 20 points and a test set of
1000 points. To facilitate learning we use a 5 dimension feature representation of x as sin(2ix) for i ∈ {0, · · · , 4}.

Model. We use an MLP with one hidden layer of width 512 and a 2 dimensional output for both policies and
Q functions. Policies are defined by taking the softmax of the output of the MLP.

Learning. We train the models using Adam with a learning rate of 0.001 and batch size of 5 for 1000 epochs.

D.2 Bandit CIFAR-10

D.2.1 Detailed experimental setup

Data. We use a bandit version of the CIFAR-10 dataset (Krizhevsky, 2009). The conversion from classification
to bandit is made just as for MNIST.

We use two different behavior policies. One is a uniform behavior that selects each action with probability 0.1
and the other is the hand-crafted behavior policy from Joachims et al. (2018), which we will refer to as HC.

Model. We use a ResNet-18 (He et al., 2016) from PyTorch (Paszke et al., 2019) for both the policy and the Q
function. The only modification we make to accommodate for the smaller images in CIFAR is to remove the first
max-pooling layer.

Learning. We train using SGD with momentum 0.9 and a batch size 128 for 1000 epochs. We use a learning
rate of 0.1 for the first 200 epochs, 0.01 for the next 200, and 0.001 for the last 600. To improve stability we use
gradient clipping and reduce the learning rate in the very first epoch to 0.01.

D.2.2 Extended Results

Here we present the learning curves for the various models we trained.

Figure 4: Learning curves for all algorithms trained on the hand-crafted actions for CIFAR-10
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Figure 5: Learning curves for all algorithms trained on the uniform actions for CIFAR-10

Analysis. These learning curves show how training policies directly by stochastic gradient ascent on V̂B can be
difficult (as observed in Chen et al. (2019)). The learning curves will often have long periods of no improvement
signifying a difficult optimization landscape. This is especially true for the case where no baseline is present and
optimization can barely proceed at all.

Another important observation is that for a baseline of 0.9 we have effective rewards of 0.1 and 1.1. In this case
the policy begins to learn as it would if the rewards for misclassified examples were negative and then the bandit
overfitting kicks in as the policy learned to imitate the misclassified examples to increase V̂B .

Finally, as in Joachims et al. (2018) the performance is highly dependent on the baseline even among those that
ensure that misclassified examples have negative reward while correctly classified examples have positive reward.
We speculate that this is due to optimization issues rather than statistical issues. Baselines do after all also serve
to reduce variance in the gradients.

D.3 World3 experiment in whynot

D.3.1 Detailed experimental setup

Data. Data is generated according to the World3 environment from whynot (Miller et al., 2020). Specifically,
we run the simulator from 1975 to 2050. We randomize the initial state of the simulator and that random initial
state is the context in the bandit problem. The two actions are treat or no treat, where the treatment in this
case is reducing the persistent pollution generation factor from 1.0 to 0.85. The reward corresponds to the total
population in 2050. So, the problem is essentially testing the effect of reducing pollution on population in the
simulator.

We normalize the data as follows to create a meaningful bandit problem. Contexts: we calculate the mean and
standard deviation on the training set and use these to whiten the data. Rewards: to get the rewards in a
reasonable scale we subtract 1.5× 108 and divide by 1× 109. To ensure that treat does not always dominate no
treat we subtract 8 from the rewards of treat. This can be seen as modeling a cost incurred by choosing the
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treat action.

We sample a train set of 1000 points and a test set of 5000 points from this process using a uniform behavior
policy.

Model. We use an MLP with one hidden layer of width 512 and a 2 dimensional output for both policies and
Q functions. Policies are defined by taking the softmax of the output of the MLP.

Learning. We train using SGD with learning rate 0.1, momentum 0.9, and batch size 128 for 10000 epochs for
all models.

D.3.2 Extended results

Here we present a few learning curves for the models trained in this problem.

Figure 6: Top: Learning curves for all algorithms trained on the World3 environment with no baseline. Bottom:
Learning curves for policy optimization across all baselines.

Analysis. Here we show that policy optimization has qualitiatively the same behavior in the World3 problem
across all baselines. As the estimated value increases, the test value decreases. This is indicative of bandit
overfitting. Tuning the baseline is not sufficient to solve this problem since the reward function is much richer
and more context dependent than in a classification problem.

E Discussion of propensity overfitting

Swaminathan and Joachims (2015b) raise an issue that is similar to bandit overfitting that they call “propensity
overfitting” and propose a self-normalized estimator in an attempt to alleviate the problem. They explain the issue
as overfitting towards the sum of propensities P̂N defined below and they propose to maximize the self-normalized
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V̂SNIW:

P̂N (π;SB) =
1

N

N∑
i=1

π(ai|xi)
β(ai|xi)

, V̂SNIW(π;SB) =
V̂IW(π;S)

P̂N (π;SB)
=

∑N
i=1 ri(ai)

π(ai|xi)
β(ai|xi)∑N

i=1
π(ai|xi)
β(ai|xi)

(39)

The first thing to note is that the notion of overfitting towards P̂N is not as precise as our definition of bandit
error as a way to measure bandit overfitting. Second, the proposed self-normalized estimator is still vulnerable to
bandit overfitting. Consider the following modified version of our two action example:

x ∼ U([−1, 1]), r|x = (1 + x, 2 + x), β(a|x) = 1/2 ∀x, a (40)

Clearly the optimal policy π∗ always chooses action 2. With access to the full reward, the learned policy would
see that at every datapoint, the objective V̂F is maximized by choosing action 2 as desired. However, assuming
without loss of generality by reordering indices that x1 ≈ 1 and a1 = 2. Then a policy π̂ that sets π̂(a1|x1) = 1
and π̂(ai|xi) = 0 for all i > 1 has value estimates:

V̂SNIW (π̂) =
(2 + x1) 1

1/2

1
1/2

= 2 + x1 ≈ 3 (41)

E[V̂SNIW (π∗)] =

N
2 E[2 + x] 1

1/2

N
2

1
1/2

= E[2 + x] = 2 (42)

Thus, V̂SNIW can be optimized by suboptimal policies like π̂. This shows how the self-normalized estimator is
insufficient to solve the problem of bandit overfitting.

Joachims et al. (2018) show that a constant baseline approximates a self-normalized estimate. As shown in the
main paper, constant baselines are insufficient to prevent bandit overfitting. This is because when the reward has
rich structure that depends on the contexts, it is not possible to find a baseline that picks out the optimal action.

F Small model classes

In this section we state and prove theorems that bound each term of the full regret decomposition for each
algorithm we consider when we use finite model classes. Similar results can be shown for other classical notions of
model class complexity.
Theorem 5 (Policy optimization with a small model class). Assume strict positivity and a finite policy class Π.
Let εΠ = V (π∗) − supπ∈Π V (π). Denote ∆r = rmax − rmin. Then we have that for any δ > 0 with probability
1− δ each of the following holds:

Approximation Error = V (π∗)− sup
π∈Π

V (π) ≤ εΠ

Estimation Error = sup
π∈Π

V (π)− V (πF ) ≤ 2∆r

√
log(2|Π|/δ)

2N

Bandit Error = V (πF )− V (πB) ≤ 2∆r

τ

√
log(2|Π|/δ)

2N

Proof. The bound on approximation error follows directly from the definition of εΠ. The bound on the estimation
error follows from a standard application of a Hoeffding bound on the random variables Xi = 〈ri, π(·|xi)〉 which
are bounded by ∆r and a union bound over the policy class.

The bound on bandit error essentially follows Theorem 3.2 of Strehl et al. (2010), we include a proof for
completeness:

V (πF )− V (πB) = V (πF )− V̂B(πB) + V̂B(πB)− V (πB)

≤ V (πF )− V̂B(πF ) + V̂B(πB)− V (πB)

≤ 2 sup
π∈Π
|V (π)− V̂B(π)|

≤ 2∆r

τ

√
log(2|Π|/δ)

2N
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The first inequality comes from the definition of πB. The second comes since both πF , πB ∈ Π. And the last
inequality follows from an application of a Hoeffding bound on the random variables Xi = ri(ai)

π(ai|xi)
pi

which
are bounded by ∆r

τ and a union bound over the policy class.

Theorem 6 (Value-based learning with a small model class). Assume strict positivity and a finite function class
Q which induces a finite class of greedy policies ΠQ. Let εQ = infQ̂∈Q Ex,a∼D,β [(Q(x, a) − Q̂(x, a))2]. Denote
∆r = rmax − rmin. Then we have that for any δ > 0 with probability 1− δ each of the following holds:

Approximation Error = V (π∗)− sup
π∈ΠQ

V (π) ≤ 2
√
εQ/τ (43)

Estimation Error = sup
π∈ΠQ

V (π)− V (πF ) ≤ 2∆r

√
log(|Q|/δ)

2N
(44)

Bandit Error = V (πF )− V (πQ̂) ≤ 10∆r√
τ

√
log(|Q|/δ)

N
+ 6
√

∆r

(
log(|Q|/δ)

τN
εQ

)1/4

+ 2
√
εQ/τ (45)

Proof. To bound the approximation error, we can let π̂ be the greedy policy associated with a Q-function Q̂ and
apply Lemmas 2 and 3. This gives us

V (π∗)− sup
π̂∈ΠQ

V (π̂) = inf
Q̂∈Q

[V (π∗)− V (π̂)] ≤ inf
Q̂∈Q

2√
τ

√
Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2] = 2

√
εQ/τ . (46)

The bound on the estimation error follows the same as before from standard uniform convergence arguments.

The bound on the bandit error follows by again applying Lemmas 2 and 3 and then making the concentration
argument from Lemma 16 of Chen and Jiang (2019). Explicitly, our Lemmas give us

V (πF )− V (πQ̂) ≤ V (π∗)− V (πQ̂) ≤ 2√
τ

√
Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2]. (47)

Then, to bound the squared error term, we can add and subtract:

Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2] = Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2]− inf
Q̄∈Q

Ex,a∼D,β [(Q(x, a)− Q̄(x, a))2] (48)

+ inf
Q̄∈Q

Ex,a∼D,β [(Q(x, a)− Q̄(x, a))2] (49)

≤ Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2]− inf
Q̄∈Q

Ex,a∼D,β [(Q(x, a)− Q̄(x, a))2] (50)

+ εQ. (51)

Now we want to show that the difference in squared error terms concentrates for large N . This is precisely what
Lemma 16 from Chen and Jiang (2019) does using a one-sided Bernstein inequality. This gives us for any δ > 0
an upper bound with probability 1− δ of

56∆2
r log(|Q|/δ)

3N
+

√
εQ

32∆2
r log(|Q|/δ)
N

(52)

Plugging this in and simplifying the constants gives the result.

Analysis. Comparing the two bounds we see that value-based learning has worse dependence on model
misspecification because it is not directly trying to optimize the value of the learned policy. However, value-based
methods do have better dependence on τ . So in the case with no misspecification, the bounds for value-based
learning are slightly better.
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