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ABSTRACT

We propose a technique for learning an embedding of k-step action sequences
such that a point in the embedding space maps 1-to-1 with the effect of the cor-
responding action sequences; randomly sampling an action in this space at time t
uniquely corresponds to selecting a state to visit at time t + k. We then leverage
this embedding by introducing an extension for off-policy reinforcement learning
algorithms which allows temporally-abstracted actions without reducing sample
efficiency. We demonstrate that our learned action sequence embedding transfers
within families of environments and substantially improves the performance of a
state-of-the-art model-free reinforcement learning algorithm.

1 INTRODUCTION

In recent years there has been great progress in model-free reinforcement learning for control, both
in simulation (Lillicrap et al., 2015; Andrychowicz et al., 2018; Haarnoja et al., 2018a; Fujimoto
et al., 2018) and on real hardware (Pinto & Gupta, 2016; Kalashnikov et al., 2018; Haarnoja et al.,
2018b). However such algorithms tend to suffer from high sample complexity, which reduces their
applicability to general tasks in the real world. An important factor in the poor sample efficiency of
reinforcement learning algorithms is their speed of exploration. Whether these algorithms explore
via uniform actions (Mnih et al., 2015) or via a correlated random process (Lillicrap et al., 2015),
stochastically selecting an action at each timestep corresponds to a (correlated) random walk through
state space. While many methods have been proposed to improve exploration with intrinsic moti-
vation (Mohamed & Rezende, 2015; Pathak et al., 2017; Burda et al., 2018), with visitation counts
(Bellemare et al., 2016; Ostrovski et al., 2017; Tang et al., 2017), or with counterfactual rewards
(Andrychowicz et al., 2017), these methods only indirectly influence the random walk dynamics of
the environment by shaping the action distribution of the policy.

In this work, we seek to improve the behavior of reinforcement learning methods by incorporating
information about the transition structure of the environment into the action space. We define a
representation of action sequences called the Effect-Dependent Embedding (EDE). Instead of taking
a random walk at each timestep, this structure allows a policy to explore by sampling a state to visit
k timesteps in the future. These improvements are orthogonal to the supplementary rewards defined
by e.g. Andrychowicz et al. (2017); Pathak et al. (2017) and can be combined with those methods
without modification.

Our contribution has three components:

1. We propose a technique for learning an embedding space of action sequences based on the
effect each sequence has on the environment.

2. We define a simple deterministic objective to approximately invert the many-to-one map-
ping of action sequences to embeddings.

3. We extend the Deterministic Policy Gradient (DPG) (Silver et al., 2014) family of algo-
rithms to enable sample-efficient training in a temporally abstracted action space.

We demonstrate the effectiveness of our method by training the Twin Delayed Deep Deterministic
policy gradient algorithm (TD3) (Fujimoto et al., 2018) in the EDE action space to form an algorithm
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we call EDE-TD3. Furthermore, we show that the action representation learned by EDE transfers
within families of environments as long as the basic environment dynamics (e.g. robot kinematics)
remain the same. This allows us to train EDE once and use it to train policies for several different
tasks, even when those tasks have different observation spaces, rewards, or objects to interact with.
We find that EDE-TD3 delivers substantial gains to both sample efficiency and asymptotic perfor-
mance compared to TD3 in the original action space, and this remains true when transferring the
EDE space from another environment.

2 LEARNED ACTION SEQUENCE REPRESENTATION

In this section we describe a novel method for learning an abstract representation of action se-
quences. We first propose a new formalism for thinking about actions and sequences of actions in
a Markov decision process (MDP). We then describe a method for learning an abstract space called
Effect-Dependent Embedding (EDE) space, in which each action sequence is represented by the
effects it has on the state. Finally, we propose a simple objective to train the inverse mapping from
EDE space back into sequences of raw actions.

For space reasons we omit the usual definitions of the Markov decision process and its objectives;
instead we will use the conventions described in Silver et al. (2014) except as otherwise noted.

2.1 REPRESENTING ACTIONS BY THEIR EFFECTS

Let T be the transition function of the environment such that T (st, at) = st+1 is the next state after
taking action at in state st. Likewise let T (st, at:t+k−1) = st+k be the result of starting in state
st and taking a sequence of k actions at:t+k−1. We define two sequences of actions a1:k ≡ ā1:j
as equivalent if, ∀s ∈ S , T (s, a1:k) = T (s, ā1:j). We then say that a1:k and ā1:j have the same
“effect”. Let Eq(a1:k) = {ā1:j : a1:k ≡ ā1:j} be a set of equivalent action sequences. We denote
by A the set of all such equivalence classes; A is thus the set of effects that action sequences can
have on the environment.

We now consider the challenge of representing A. For simplicity, let us consider a subset Ak ⊆ A
which is the set of effects realizeable in exactly k actions. For k = 1, the raw actions themselves
form a reasonable representation of Ak. Assuming no two actions ai and aj in the environment
are exactly identical across all states, the raw actions are a minimal representation of A1 such that
ai ≡ aj if and only if ai = aj . However, for k > 1, representing some Ak ∈ Ak by a sequence of
actions {a1, ..., ak} is redundant as many sequences may correspond to the same effect, e.g. moving
back and forth several times is equivalent to not moving at all.

In the next section we propose a method for learning a minimal representation of action sequences
for which each point corresponds to a unique effect. We term the space of these unique representa-
tions Effect-Dependent Embedding (EDE) space.

2.2 LEARNING THE EFFECT-DEPENDENT EMBEDDING
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Figure 1: The training procedure for the EDE encoder E. The encoder is trained to minimize the
information content of the learned embedding A while still allowing the predictor P to make accurate
predictions.

We propose that one objective for learning a k-step EDE space Ak is to find the minimum de-
scription length (MDL) (Rissanen, 1978) encoding Ak for each action sequence of length k such
that p(st+k|st,Ak) = p(st+k|st, at, ..., at+k−1). That is, the encoding Ak of an action sequence
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{a1, ..., ak} should preserve all information about the final effects of this action sequence, and no
information about what happens along the way.1

In practice, we approximate this objective by information-regularizing an action representation while
learning a predictive model of the environment. This model, shown in Figure 1, takes a form similar
to a conditional variational autoencoder (Kingma & Welling, 2013; Rezende et al., 2014) with an
unconditional inference network. However, we find it more instructive to simply interpret it as a
regularized forward model. The loss function used to train this forward model is a combination
between the mean-squared error of the model’s predictions and the KL divergence from a prior to
the action encoding:

L(θE, θP) = EA∼E

[
||P
(
st,A; θP

)
− st+k||22

]
+ βDKL

(
E(at:t+k−1; θE) || N (0, I)

)
Here E and P are the encoder and the predictor respectively, with corresponding parameters θE and
θP. In this work E and P are both realized as neural networks and the state and action observations
are sampled from the environment according to a random policy. A visualization of the space learned
by this objective is available in Appendix B.

2.3 DECODING TO RAW ACTIONS

In order to be useful for RL, the abstract action space produced by the encoder must be decodeable
to raw actions in the environment. Since the mapping from action sequences to high-level actions is
many-to-one, inverting it is nontrivial. We simplify this ill-posed problem by defining an objective
with a single optimum.

Once the action encoder E is fully trained, we hold it fixed and train the action decoder to minimize

L(θD) = EA∼N (0,I)

[
||E(D(A; θD))−A||22 + λ||D(A; θD)||22

]
The first term of this objective ensures that the action decoder D is a one-sided inverse of E; that is,
E(D(A)) = A but D(E(a1, ..., ak)) 6= a1, ..., ak. The second term of the loss ensures that D is
in particular the minimum-norm one-sided inverse of E and gives the objective for the output of D
a single minimum. We choose λ to be small (e.g. 10−4) to ensure that the reconstruction criterion
dominates the optimization.

3 EFFICIENT HIGH-LEVEL RL

Once equipped with a decoder which maps from high-level actions to sequences of low-level actions,
we wish to train a high-level policy that can solve a task by selecting high-level actions. In this
section we extend the Deterministic Policy Gradient (Silver et al., 2014) family of algorithms to
work with temporally-extended actions while maintaining their off-policy updates and learning from
every environment step. This allows our method to achieve superior sample efficiency when working
with high-level actions. In particular, we extend Twin Delayed Deterministic policy gradient (TD3)
(Fujimoto et al., 2018) to work with the EDE representation of actions to form an algorithm we call
EDE-TD3.

We first describe why DPG requires modification to accommodate temporally-abstracted actions.
One simple approach to combining EDE with DPG would be to incorporate the k-step EDE action
space into the environment to form a new MDP. This MDP allows the use of DPG without modi-
fication; however, it only emits observations once every k timesteps. As a result, after N steps in
the original environment, the deterministic policy µ and critic function Q can only be trained on
N/k observations. This has a substantial impact on sample efficiency when measured in the original
environment.

1Using this objective as the action space for RL encodes an assumption about the environment: nothing that
happens along a trajectory is relevant except for the final state. We say that such an environment satisfies the
Machiavellian assumption (“the ends justify the means”). However, we evaluate our method on environments
which violate this assumption to some degree and find EDE to be quite robust.
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Instead we require an algorithm which can perform updates to µ and Q for every environment step.
To do this, we train both µ and Q in the abstract action space with minor changes to their updates.
We distinguish these policy and critic functions whose actions are in EDE space from their low-level
equivalents by adding a superscript EDE, i.e. µEDE and QEDE. We augment the critic function with
an additional input, i, which represents the number of steps 0 ≤ i < k of the current embedded
action e that have already been executed. This forms the EDE critic:

QEDE(st, et, i) =

k−i−1∑
j=0

(
γjrt+j

)
+ γk−iQEDE

(
st+k−i, µ

EDE(st+k−i), 0
)

(1)

In plain language, the value of being on step i of abstract action et is the value of finishing the
remaining (k − i) steps of et and then continuing on following the policy. The EDE critic is trained
by minimizing the Bellman error implied by Equation 1.

To update the policy, we follow the standard DPG technique of using the gradient of the critic. The
only modification needed is to note that at the time of a new high-level action, i is always zero. The
gradient of the return with respect to the policy parameters, given that data was collected according
to a behavior policy β, is then

∇θJβ(µEDE
θ ) ≈ Es∼ρβ

[
∇θµEDE

θ (s)∇eQEDE(s, e, 0)|e=µEDE
θ (s)

]
(2)

4 RELATED WORK

Similarly to this work, hierarchical reinforcement learning seeks to learn temporal abstractions.
These abstractions are variously defined as skills (Florensa et al., 2017; Hausman et al., 2018),
options (Sutton et al., 1999; Bacon et al., 2017), or goal-directed sub-policies (Kulkarni et al., 2016;
Vezhnevets et al., 2017). Whereas these works train a low-level policy by maximizing the reward of
the overall task or a heuristically-defined subtask, in this work we seek to learn a representation of
the transition structure of the environment.

Most closely related are Co-Reyes et al. (2018) and Nachum et al. (2018). SeCTAR (Co-Reyes et al.,
2018) simultaneously learns a generative model of future states and a low-level policy which can
reach those states. Unlike this work, their latent space represents a particular trajectory through the
environment rather than an effect, making it state-dependent. This limits its transferability between
environments. HIRO (Nachum et al., 2018) addresses the aim of off-policy training of hierarchical
policies. However, their off-policy performance depends on an approximate re-labeling of action
sequences to train the high-level policy, and their low-level policy must be trained on an observation
space which matches the target task.

Also related are methods which attempt to learn embeddings of single actions to enable efficient
learning in very large action spaces (Dulac-Arnold et al., 2015; Chandak et al., 2019). These works
similarly learn a latent space of actions, however their latent spaces are for a single action and their
objectives are based on reconstruction of the action distribution, not the effects of an action on the
environment.

5 EXPERIMENTS

In the following experiments, we evaluate the effectiveness of the EDE representation as an action
space for deep RL. We particularly wish to answer the following questions:

1. Can the EDE action space represent the optimal policy for continuous control tasks?
2. Does model-free RL in EDE space use fewer samples from the environment?
3. Does the EDE representation transfer between different tasks and environments in the same

family?

To simultaneously evaluate all three questions, we use two different “families” of related tasks.
Within each of these families, the robot which the agent controls maintains the same dynamics,
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Figure 2: Performance of EDE-TD3 and TD3 on the Reacher family of environments. Dark lines
are mean reward over 8 seeds and shaded areas are bootstrapped confidence intervals. Across all
the environments, EDE-TD3 outperforms TD3 in sample efficiency, and matches or beats it in
asymptotic performance. The EDE action space used across all three tasks was trained only on
ReacherVertical, demonstrating that EDE representations are highly transferable.

implying that the transition information encoded in the EDE action representation is still approxi-
mately valid. However, each task in the family may have different objects to interact with and even a
different observation space. Whereas directly transferring a policy to an environment with different
observations would be impossible, EDE requires only that the action space remain the same.

The “Reacher” family of tasks involves controlling a 2D, 2DoF arm to interact with various objects.
The “7DoF” family of tasks features a 3D, 7DoF arm which must use different end effectors to move
various objects to their goal positions. All hyperparameters are the same for EDE-TD3 and for TD3,
and are constant across all experiments. Images and detailed descriptions of both families of tasks,
along with hyperparameter settings, are available in Appendix A.

5.1 RESULTS

Figure 2 shows the results of EDE-TD3 and TD3 applied to the Reacher family of tasks, and Figure
3 shows results on the 7DoF family. These results demonstrate that (1) EDE action spaces can
represent policies just as good as as the raw action space, at least up to the ability of RL to find
them; (2) model-free RL shows substantial efficiency gains from using the EDE action space; and
(3) results 1 and 2 continue to hold even when transferring the EDE space between environments. It
is especially worth noting that the gains from EDE-TD3 increase as the tasks get harder, maintaining
convergence, stability, and low variance in the face of high-dimensional control tasks with difficult
exploration.

Figure 3: EDE-TD3 and TD3 on the 7DoF family of environments. Dark lines are mean reward
over 8 seeds and shaded areas are bootstrapped confidence intervals. Whereas TD3 in the regular
action space does not manage to solve either task and even diverges, EDE-TD3 demonstrates stable,
low-variance convergence to a high-quality policy. The EDE action space used for these two tasks
was trained only on the 7DoF Pusher environment.
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APPENDIX A EXPERIMENT DETAILS

(a) ReacherVertical (b) ReacherTurn (c) ReacherPush

Figure 4: The Reacher family of environments. ReacherVertical requires the agent to move
the tip of the arm to the red dot. ReacherTurn requires the agent to turn a rotating spinner (dark
red) so that the tip of the spinner (gray) is close to the target point (red). ReacherPush requires
the agent to push the brown box onto the red target point. The initial state of the simulator and the
target point are randomized for each episode. In each environment the rewards are dense and there
is a penalty on the norm of the actions. The robot’s kinematics are the same in each environment but
the observation spaces are different.

The first task family, pictured in Figure 4, is the “Reacher family”, based on the Reacher-v2
MuJoCo (Todorov et al., 2012) task from OpenAI Gym (Brockman et al., 2016). These tasks form
a simple new benchmark for multitask robot learning. The first task, which we use as the “source”
task for training the EDE space, is ReacherVertical, a standard reach to a location task. The
other two tasks are inspired by the DeepMind Control Suite’s Finger Turn and Stacker envi-
ronments, respectively (Tassa et al., 2018). In ReacherTurn, the same 2-link Reacher robot must
turn a spinner to the specified random location. In ReacherPush, the Reacher must push a block
to the correct random location.

(a) Pusher-v2 (b) Striker-v2

Figure 5: The 7DoF family of environments. Pusher-v2 requires the agent to use a C-shaped
end effector to push a puck across the table onto a red circle. Striker-v2 requires the agent to
use a flat end effector to hit a ball so that it rolls across the table and reaches the goal. As with the
Reacher family, the dynamics of the robot are the same within the 7DoF family of tasks. However,
the morphology of the robot, as well as the object it interacts with, is different.

The second task family is the “7DoF family”, which comprises Pusher-v2 (the source task) and
Striker-v2 (the target task) from OpenAI Gym (Brockman et al., 2016). These tasks use similar
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(though not identical) robot models, making them a feasible family of tasks for transfer. They are
shown in Figure 5.

We compare EDE-TD3 versus TD3 on these two families of tasks. In each family, the EDE repre-
sentation is trained on a dataset of 100K steps of a random policy in the source task. As this EDE
pretraining is unsupervised (i.e. does not use rewards) and only occurs once for each family of en-
vironments, the x axis on our training curves refers only to the samples used to train the policy. For
both EDE-TD3 and regular TD3 we use all of the default hyperparameters from the authors’ code2

across all tasks. Throughout these experiments we set the loss scales β = λ = 10−4, the number of
actions in the EDE space k = 4, and we choose the dimension of the EDE space to be equal to the
dimension of a single action in the environment.

APPENDIX B VISUALIZING THE EDE SPACE

(a) Effect space (b) EDE space

Figure 6: These plots represent the mapping between the effects of action sequences and points in
EDE space. In the left plot, each point represents the effect st+4−st of a sequence of four randomly-
selected actions {a1, ..., a4}, colored according to their location in the plot. That is, the e.g. x
coordinate of a point represents the ∆x between the initial state and the state reached at the end of the
four actions. Each point in the right plot corresponds to the point in the left plot with the same color,
and its coordinates in the right axes are given by E(a1, ..., a4). The 1:1 correspondence between the
effects of a sequence of actions and the EDE space representation of that action sequence indicates
that EDE is truly encoding the change in state induced by a sequence of actions.

To better understand whether the latent space of action sequences learned by EDE corresponds to the
effects of those action sequences, we use a simple linear Point environment with a 2D state space and
2D action space. We render action sequences on a pair of plots in Figure 6. On the left plot we show
the effect of the action sequence, measured as st+4 − st. Each action sequence is assigned a color
based on its location in this plot. On the right plot, we show each action sequence’s location in EDE
space, marking the point with that action sequence’s color. If the spaces are isomorphic, we should
expect to see smooth color transitions in the right plot, indicating that the EDE representations of any
pair of action sequences are ordered according to their effects. Indeed, for this simple problem, we
see that the EDE space is an affine transformation of the effect space. The correspondence between
the two spaces appears to remain strong for high-dimensional and nonlinear environments, but is
much harder to render in two dimensions.

2https://github.com/sfujim/TD3
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APPENDIX C EXPLORATION WITH RAW AND EDE ACTION SPACES

(a) Random exploration without EDE (b) Random exploration with EDE

Figure 7: These figures illustrate the way the EDE action space enables more efficient exploration.
Each figure is generated by running a uniform random policy for ten episodes on a PointMass
environment. Since the environment has only two position dimensions, we can plot the actual 2D
position of the mass over the course of each episode. Left: A policy which selects actions at each
environment timestep uniformly at random explores a very small region of the state space. Right:
A policy which randomly selects EDE actions once every k timesteps explores much more widely.
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