
Disentangled Representations in Neural Models

by

William Whitney

S.B., Massachusetts Institute of Technology (2013)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2016

© William Whitney, MMXVI. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

January 29, 2016

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Joshua B. Tenenbaum

Professor
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Christopher Terman

Chairman, Masters of Engineering Thesis Committee

ar
X

iv
:1

60
2.

02
38

3v
1 

 [
cs

.L
G

] 
 7

 F
eb

 2
01

6



2



Disentangled Representations in Neural Models

by

William Whitney

Submitted to the Department of Electrical Engineering and Computer Science
on January 29, 2016, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Representation learning is the foundation for the recent success of neural network
models. However, the distributed representations generated by neural networks are
far from ideal. Due to their highly entangled nature, they are difficult to reuse and
interpret, and they do a poor job of capturing the sparsity which is present in real-
world transformations.

In this paper, I describe methods for learning disentangled representations in the
two domains of graphics and computation. These methods allow neural methods
to learn representations which are easy to interpret and reuse, yet they incur little
or no penalty to performance. In the Graphics section, I demonstrate the ability
of these methods to infer the generating parameters of images and rerender those
images under novel conditions. In the Computation section, I describe a model which
is able to factorize a multitask learning problem into subtasks and which experiences
no catastrophic forgetting. Together these techniques provide the tools to design a
wide range of models that learn disentangled representations and better model the
factors of variation in the real world.

Thesis Supervisor: Joshua B. Tenenbaum
Title: Professor

3



4



Acknowledgments

I would like to thank my girlfriend, Benjana, who is my joy. She lets me see my work

through new eyes.

I thank Tejas Kulkarni for his mentorship and friendship. He has been my gateway

into this world and a strong guiding influence, and I would not be here without him.

I thank Josh Tenenbaum for his guidance. He has pushed me to think about the

most fundamental problems.

I thank my parents for their constant love and support. They made me this way,

so please direct all complaints to them.

I thank Thomas Vetter for access to the Basel face model. I am grateful for

support from the MIT Center for Brains, Minds, and Machines (CBMM).

5



Contents

1 Introduction 12

1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Desiderata for representations 14

2.1 Disentangled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Interpretable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Performant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Reusable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Compact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Disentanglement in Vision 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Training with Specific Transformations . . . . . . . . . . . . . 24

3.3.2 Invariance Targeting . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 3D Face Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.2 Comparison with Entangled Representations . . . . . . . . . . 31

3.4.3 Chair Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Disentanglement in Computation 36

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6



4.1.1 Catastrophic forgetting . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Controller-function networks . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Relationship to mixture of experts . . . . . . . . . . . . . . . 44

4.3.2 Hard and soft decisions . . . . . . . . . . . . . . . . . . . . . . 44

4.3.3 Continuation methods . . . . . . . . . . . . . . . . . . . . . . 46

4.3.4 Training with noisy decisions . . . . . . . . . . . . . . . . . . 46

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1 Disentanglement of functions . . . . . . . . . . . . . . . . . . 48

4.4.2 Catastrophic forgetting . . . . . . . . . . . . . . . . . . . . . . 50

5 Discussion 52

5.1 DC-IGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Controller-function networks . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

References 57

7



List of Figures

3-1 Model Architecture. Deep Convolutional Inverse Graphics Net-

work (DC-IGN) has an encoder and a decoder. We follow the varia-

tional autoencoder (Kingma and Welling 2013) architecture with vari-

ations. The encoder consists of several layers of convolutions followed

by max-pooling and the decoder has several layers of unpooling (up-

sampling using nearest neighbors) followed by convolution. (a) During

training, data 𝑥 is passed through the encoder to produce the pos-

terior approximation 𝑄(𝑧𝑖|𝑥), where 𝑧𝑖 consists of scene latent vari-

ables such as pose, light, texture or shape. In order to learn pa-

rameters in DC-IGN, gradients are back-propagated using stochas-

tic gradient descent using the following variational object function:

−𝑙𝑜𝑔(𝑃 (𝑥|𝑧𝑖)) + 𝐾𝐿(𝑄(𝑧𝑖|𝑥)||𝑃 (𝑧𝑖)) for every 𝑧𝑖. We can force DC-

IGN to learn a disentangled representation by showing mini-batches

with a set of inactive and active transformations (e.g. face rotating,

light sweeping in some direction etc). (b) During test, data 𝑥 can

be passed through the encoder to get latents 𝑧𝑖. Images can be re-

rendered to different viewpoints, lighting conditions, shape variations,

etc by setting the appropriate graphics code group 𝑧𝑖, which is how one

would manipulate an off-the-shelf 3D graphics engine. . . . . . . . . . 23

3-2 Structure of the representation vector. 𝜑 is the azimuth of the

face, 𝛼 is the elevation of the face with respect to the camera, and 𝜑𝐿

is the azimuth of the light source. . . . . . . . . . . . . . . . . . . . . 23

8



3-3 Training on a minibatch in which only 𝜑, the azimuth angle

of the face, changes. During the forward step, the output from each

component 𝑧𝑖 ̸= 𝑧1 of the encoder is altered to be the same for each

sample in the batch. This reflects the fact that the generating variables

of the image (e.g. the identity of the face) which correspond to the

desired values of these latents are unchanged throughout the batch.

By holding these outputs constant throughout the batch, the single

neuron 𝑧1 is forced to explain all the variance within the batch, i.e. the

full range of changes to the image caused by changing 𝜑. During the

backward step 𝑧1 is the only neuron which receives a gradient signal

from the attempted reconstruction, and all 𝑧𝑖 ̸= 𝑧1 receive a signal

which nudges them to be closer to their respective averages over the

batch. During the complete training process, after this batch, another

batch is selected at random; it likewise contains variations of only one of

𝜑, 𝛼, 𝜑𝐿, 𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐; all neurons which do not correspond to the selected

latent are clamped; and the training proceeds. . . . . . . . . . . . . . 25

3-4 Manipulating light. Qualitative results showing the generalization

capability of the learned DC-IGN decoder to re-render a single input

image under different lighting conditions. We change the latent 𝑧𝑙𝑖𝑔ℎ𝑡

smoothly leaving all 199 other latents unchanged. . . . . . . . . . . . 28

3-5 Manipulating elevation. Results showing the ability of the DC-

IGN decoder to change the elevation of the input image. We change

the latent 𝑧𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 smoothly leaving all 199 other latents unchanged. 29

3-6 Manipulating azimuth (horizontal angle). Qualitative results

showing the generalization capability of the learnt DC-IGN decoder to

render original static image with different azimuth (pose) directions.

The latent neuron 𝑧𝑎𝑧𝑖𝑚𝑢𝑡ℎ is changed to random values but all other

latents are clamped. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

9



3-7 Generalization of decoder to render images in novel view-

points and lighting conditions. We generated several datasets by

varying light, azimuth and elevation, and tested the invariance proper-

ties of DC-IGN’s representation 𝑍. We show quantitative performance

on three network configurations as described in Sec. 3.4.1. All DC-

IGN encoder networks reasonably predicts transformations from static

test images. Interestingly, as seen in the first plot, the encoder net-

work seems to have learnt a switch node to deal uniquely with the

mirror-symmetric sides of the face. . . . . . . . . . . . . . . . . . . . 32

3-8 Entangled versus disentangled representations. First column:

Original images. Second column: transformed image using DC-IGN.

Third column: transformed image using normally-trained network. . . 33

3-9 Manipulating rotation: Each row was generated by encoding the

input image (leftmost) with the encoder, then changing the value of a

single latent and putting this modified encoding through the decoder.

The network has never seen these chairs before at any orientation.

Top: Some positive examples. Note that the DC-IGN is making a

conjecture about any components of the chair it cannot see; in par-

ticular, it guesses that the chair in the top row has arms, because it

can’t see that it doesn’t. Bottom: Examples in which the network

extrapolates to new viewpoints less accurately. . . . . . . . . . . . . . 34

4-1 The controller and layers of the controller-function network

(CFN). The controller provides weights on each layer as a function of

the data. This shows three layers, but there can be many more. . . . 42

10



4-2 Disentanglement and validation loss plotted over the course of

training. Disentanglement, or independence, is measured by the L2

norm of the weight vector over the functions. In this measure, 0.35 is

totally entangled, with every function accorded equal weight for every

input, and 1.0 is totally disentangled, with precisely one function used

for each input. Left: with sharpening and noise. Right: without

sharpening and noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4-3 Forgetting when trained on one task. When a traditional feed-

forward network, which previously trained on several tasks, is trained

exclusively on one, it forgets how to perform the others. The controller-

function network is practically immune to forgetting. In this figure, we

see each network trained exclusively on one of several tasks it is able

to do. The loss that is shown is the average L2 error attained on all of

the other tasks as this network retrains. . . . . . . . . . . . . . . . . 51

5-1 Multistep CFN. A variant of the design for using multiple timesteps

(in this case, two) to calculate each output. . . . . . . . . . . . . . . . 54

11



1. Introduction

Representation is one of the most fundamental problems in machine learning. It

underlies such varied fields as vision, speech recognition, natural language process-

ing, reinforcement learning, and graphics. Yet the question of what makes a good

representation is a deceptively complex one. On the one hand, we would like repre-

sentations which perform well on real-world tasks. On the other, we would like to be

able to interpret these representations, and they should be useful for tasks beyond

those explicit in their initial design.

Presently representations come in two varieties: those that are designed, and

those that are learned from data. Designed representations can perfectly match our

desire for structured reuse and interpretability, while learned representations require

no expert knowledge yet outperform designed features on practically every task that

has sufficient data.

This tension has been the source of great debate in the community. Clearly a rep-

resentation which has some factorizable structure can be more readily reused in part

or in whole for some new task. Much more than being just an issue of interpretation,

this concern has a very practical focus on generalization; it is unreasonable to spend

a tremendous amount of data building a new representation for every single task,

even when those tasks have strong commonalities. Since we have knowledge about

the true structure of the problem, we can design a representation which is factorized

and thus reusable.

Learned representations take a very different approach to the problem. Instead of

attempting to incorporate expert knowledge of a domain to create a representation

which will be broadly useful, a learned representation is simply the solution to a single

12



optimization problem. It is custom-designed to solve precisely the task it was trained

on, and while it may be possible to reverse-engineer such a representation for reuse

elsewhere, it is typically unclear how to do so and how useful it will be in a secondary

setting.

Despite the obvious advantages of structured representations, those we design are

inherently limited by our understanding of the problem. Perhaps it is possible to

design image features with spokes and circles that will be able to distinguish a bike

wheel from a car wheel, but there are a million subtle clues that no human would

think to include. As a result, in domain after domain, as the datasets have grown

larger, representations learned by deep neural networks have come to dominate.

The dominance of optimization-based representation learning is unavoidable and

in fact hugely beneficial to the field. However, the weaknesses of these learned repre-

sentations is not inherent in their nature; it merely reflects the limits of our current

tasks and techniques.

This thesis represents an effort to bring together the advantages of each of these

techniques to learn representations which perform well, yet have valuable structure.

Using the two domains of graphics and programs, I will discuss the rationale, tech-

niques, and results of bringing structure to neural representations.

1.1 Document overview

The next chapter discusses various criteria for assessing the quality of a representation.

In the following two chapters, I use these criteria to discuss representations in the

domains of graphics and computer programs. Each chapter begins with an overview

of the problems in the field and related work, then moves on to a description of the

specific problem I address, my methods, and the results.

In the final chapter I discuss the significance of this work to the field and promising

directions for further research.

13



2. Desiderata for representations

When evaluating a representation, it is valuable to have a clear set of goals. Several

of the goals stated here have substantial overlap, and to some degree a representation

which perfectly addresses one may automatically fulfill another as well. However,

each of them provides a distinct benefit, and their significance must be considered

with respect to those benefits.

2.1 Disentangled

A representation which is disentangled for a particular dataset is one which is sparse

over the transformations present in that data (Bengio, Courville, and Vincent 2013).

For example, given a dataset of indoor videos, a representation that explicitly rep-

resents whether or not the lights are on is more disentangled than a representation

composed of raw pixels. This is because for the common transformation of flipping

the light switch, the first representation will only change in only that single dimension

(light on or off), whereas the second will change in every single dimension (pixel).

For a representation to be disentangled implies that it factorizes some latent cause

or causes of variation. If there are two causes for the transformations in the data

which do not always happen together and which are distinguishable, a maximally

disentangled representation will have a structure that separates those causes. In

the indoor scenes example above, there might be two sources of lighting: sunlight

and electric lights. Since transformations in each of these latent variables occur

independently, it is more sparse to represent them separately.

The most disentangled possible representation for some data is a graphical model

14



expressing the “true” generative process for that data. In graphics this model might

represent each object in a room, with its pose in the scene and its intrinsic reflectance

characteristics, and the sources of lighting. For real-world transformations involving

motion, only the pose of each object needs to be updated. As the lighting shifts, noth-

ing about the representation of the objects needs to be changed; the visual appearance

of the object can be recalculated from the new lighting variables.

In a certain light, all of science is one big unsupervised learning problem in which

we search for the most disentangled representation of the world around us.

2.2 Interpretable

An interpretable representation is, simply enough, one that is easy for humans to

understand. A human should be able to make predictions about what changes in the

source domain would do in the representation domain and vice versa. In a graphics

engine’s representation of a scene, for example, it is easy for a person to predict

things like “What would the image (source domain) look like if I changed the angle

of this chair (representation domain) by 90°?” By contrast, in the representation of

a classically-trained autoencoder, it is practically impossible for a person to visualize

the image that would be generated if some particular component were changed.

Interpretability is closely related with disentanglement. This is because, in “hu-

man” domains of data like vision and audition, humans are remarkably good at in-

ferring generative structure, and tend to internally use highly disentangled repre-

sentations. However, this relationship only holds for datasets which are similar to

human experience. One could construct a dataset of videos in which the most com-

mon transformation between frames was for each pixel in the image to change its

hue by an amount proportional to the number of characters in the Arabic name of

the object shown in that pixel. The most disentangled representation of these videos

would perfectly match this structure, but this disentangled representation would be

less interpretable than a table of English names of objects and how much their color

changes per frame.

15



In a real-world setting, the most disentangled possible representation of stock

market prices might involve a latent which represents a complex agglomeration of

public opinion from the news, consumer confidence ratings, and estimates of the Fed’s

likelihood of raising rates. Such a latent might truly be the best and most independent

axis of variation for predicting the stock price, yet it would not be as easy to interpret

as a representation with one latent for public opinion, one latent for the Fed, and one

latent for consumer confidence. In such a non-human domain, our intuitions about

the factors of variation may not hold, and as a result the representations that make

sense to us and those that accurately represent the factors of variation may diverge.

Interpretability is extremely valuable in many domains. If a doctor is attempting

to plan a course of treatment for a patient, they need to be able to reason about the

factors in a diagnostic model they’re using. Even if an algorithm doesn’t need to in-

terface with a human at runtime, it’s very hard to debug a system during development

if you don’t understand what it’s doing.

2.3 Performant

A performant representation for a task contains the information needed to perform

well on that task.

If the task is determining whether or not there is a dog in a room, a representation

consisting of a photograph of the room would be less performant than a 3D voxel

model of the room, which in turn would be less performant than a single binary bit

representing whether or not there is a dog.

2.4 Reusable

A reusable representation is one that is performant for many tasks in the same domain.

To continue the example above, a 3D voxel representation of a room is more

reusable than one indicating whether or not the room contains a dog. Somewhere in

between the two would be a representation consisting of the facts,

16



• Is there an animal?

• Is it furry?

• How big is it?

• What color is it?

This representation would be able to solve the task of whether or not the room

contains a dog with high probability, and would also be able to inform the task of

whether or not the room contains a gorilla, or a whale. However, the tasks it can

address are a strict subset of the voxel representation, which could also solve such

problems as “Where is the couch?”

2.5 Compact

A compact representation is one which occupies few bits.

Compactness may not seem inherently important; it is typically irrelevant if the

representation of an image takes up one megabyte or two. However, compactness

provides a very valuable forcing function. One might build a weather forecasting

model which represents the state of the world down to the very last butterfly.

The actions of this butterfly might be indeterminate given the other latents in the

model, so it is disentangled; it might be perfectly easy to understand the meaning

of the butterfly’s representation, so it is interpretable; it might be valuable in some

other system or context, so it is reusable; and it might even minutely improve the

performance of the weather forecast, so it is performant. But somehow none of this

quite justifies its presence in a weather model.

Compactness says that we only care about the most important factors of variation.

17



3. Disentanglement in Vision

3.1 Introduction

Deep learning has led to remarkable breakthroughs in learning hierarchical represen-

tations from images. Models such as Convolutional Neural Networks (CNNs) (LeCun

and Bengio 1995), Restricted Boltzmann Machines, (Hinton, Osindero, and Teh 2006,

Salakhutdinov and Hinton (2009)), and Auto-encoders (Bengio 2009, Vincent et al.

(2010)) have been successfully applied to produce multiple layers of increasingly ab-

stract visual representations. However, there is relatively little work on characterizing

the optimal representation of the data. While Cohen et al. (2014) have considered

this problem by proposing a theoretical framework to learn irreducible representations

with both invariances and equivariances, coming up with the best representation for

any given task is an open question.

To shed some light on this question, let us consider our list of desires for repre-

sentations in the specific context of vision.

1. Disentangled: When applied to real-world transformations over images, i.e. video,

a good representation will change only sparsely. That is, the expectation over

a set of videos of the number of dimensions of the representation which change

between each frame should be small. In practice this means that common trans-

formations, like movement of an object, should be expressed concisely; whereas

uncommon transformations, like a solid object turning inside out, may be more

expensive to express.

2. Interpretable: To be highly interpretable, a representation needs to line up

18



well with the one that’s in our heads. It should express objects separately from

their conditions, and common transformations should be monotonic and smooth

in representation space.

3. Performant: Representations of visual content need to be quite rich; in order

to be able to solve problems like “Which of these objects is in front of the other?”

a representation must understand much more than just pixels.

4. Reusable: A representation which was learned to solve a very specific task,

like perhaps that of the DQN (Mnih et al. 2015), will not be helpful in other

settings, like the real world. To be reusable a model needs to capture the

structure that is universal to our world.

5. Compact: Representations of images should be able to efficiently compress the

images in their domain.

The “vision as inverse graphics” paradigm suggests a representation for images

which provides these features. Computer graphics consists of a function to go from

compact descriptions of scenes (the graphics code) to images, and this graphics code

is typically disentangled to allow for rendering scenes with fine-grained control over

transformations such as object location, pose, lighting, texture, and shape. This en-

coding is designed to easily and interpretably represent sequences of real data so that

common transformations may be compactly represented in software code; this cri-

terion is conceptually identical to disentanglement, and graphics codes conveniently

align with the properties of an ideal representation. Graphics codes are the represen-

tations which we as a society have designed to be the single most general-purpose,

interpretable, and generally usable way to express scenes.

Early work by Tenenbaum et al. (2000) was among the first to explore this

idea, and used bilinear models to differentiate between extrinsic and intrinsic factors

in images. Recent work in inverse graphics (Mansinghka et al. 2013, Kulkarni et

al. (2014), Kulkarni, Kohli, et al. (2015)) follows a general strategy of defining a

probabilistic with latent parameters, then using an inference algorithm to find the

19



most appropriate set of latent parameters given the observations. Tieleman et al.

(2014) moved beyond this two-stage pipeline by using a generic encoder network and

a domain-specific decoder network to approximate a 2D rendering function. However,

none of these approaches have been shown to automatically produce a semantically-

interpretable graphics code and to learn a 3D rendering engine to reproduce images.

I present an approach, first described in (Kulkarni, Whitney, et al. 2015), which

attempts to learn interpretable graphics codes for complex transformations such as

out-of-plane rotations and lighting variations. Given a set of images, we use a hybrid

encoder-decoder model to learn a representation that is disentangled with respect to

various transformations such as object out-of-plane rotations and lighting variations.

We employ a deep directed graphical model with many layers of convolution and de-

convolution operators that is trained using the Stochastic Gradient Variational Bayes

(SGVB) algorithm (Kingma and Welling 2013).

We propose a training procedure to encourage each group of neurons in the graph-

ics code layer to distinctly represent a specific transformation. To learn a disentangled

representation, we train using data where each mini-batch has a set of active and in-

active transformations, but we do not provide target values as in supervised learning;

the objective function remains reconstruction quality. For example, a nodding face

would have the 3D elevation transformation active but its shape, texture and other

transformations would be inactive. We exploit this type of training data to force cho-

sen neurons in the graphics code layer to specifically represent active transformations,

thereby automatically creating a disentangled representation. Given a single face im-

age, our model can re-generate the input image with a different pose and lighting.

We present qualitative and quantitative results of the model’s efficacy at learning a

3D rendering engine.

3.2 Related Work

As mentioned previously, a number of generative models have been proposed in the

literature to obtain abstract visual representations. Unlike most RBM-based mod-

20



els (Hinton, Osindero, and Teh 2006, Salakhutdinov and Hinton (2009), Lee et al.

(2009)), our approach is trained using back-propagation with objective function con-

sisting of data reconstruction and the variational bound.

Relatively recently, Kingma et al. (Kingma and Welling 2013) proposed the SGVB

algorithm to learn generative models with continuous latent variables. In this work, a

feed-forward neural network (encoder) is used to approximate the posterior distribu-

tion and a decoder network serves to enable stochastic reconstruction of observations.

In order to handle fine-grained geometry of faces, we work with relatively large scale

images (150× 150 pixels). Our approach extends and applies the SGVB algorithm to

jointly train and utilize many layers of convolution and de-convolution operators for

the encoder and decoder network respectively. The decoder network is a function that

transform a compact graphics code (200 dimensions) to a 150 × 150 image. We pro-

pose using unpooling (nearest neighbor sampling) followed by convolution to handle

the massive increase in dimensionality with a manageable number of parameters.

(Dosovitskiy, Springenberg, and Brox 2015) proposed using CNNs to generate

images given object-specific parameters in a supervised setting. As their approach

requires ground-truth labels for the graphics code layer, it cannot be directly applied

to image interpretation tasks. Our work is similar to Ranzato et al. (2007), whose

work was amongst the first to use a generic encoder-decoder architecture for feature

learning. However, in comparison to our proposal their model was trained layer-wise,

the intermediate representations were not disentangled like a graphics code, and their

approach does not use the variational auto-encoder loss to approximate the posterior

distribution. Our work is also similar in spirit to (Tang, Salakhutdinov, and Hinton

2012), but in comparison our model does not assume a Lambertian reflectance model

and implicitly constructs the 3D representations. Another piece of related work is

Desjardins et al. (2012), who used a spike and slab prior to factorize representations

in a generative deep network.

Quite recently, (Jaderberg et al. 2015) proposes a model which explicitly captures

the pose of objects in a scene through the use of predefined 2D affine transforma-

tions, which leads pose and identity to be disentangled. (Mansimov et al. 2015) use

21



an attention mechanism to generate images from text; this approach has the potential

to learn functions which are parametrized by highly disentangled symbolic represen-

tations. (Theis and Bethge 2015) use spatial LSTMs to build generative models of

textures in natural images.

In comparison to prior approaches, it is important to note that our encoder net-

work produces the interpretable and disentangled representations necessary to learn a

meaningful 3D graphics engine. A number of inverse-graphics inspired methods have

recently been proposed in the literature (Mansinghka et al. 2013). However, most

such methods rely on hand-crafted rendering engines. The exception to this is work

by Hinton et al. (2011) and Tieleman (2014) on transforming autoencoders which use

a domain-specific decoder to reconstruct input images.

(Yang et al. 2015) follows up on our work with a recurrent model which learns

similar disentangled representations from watching synthesized video.

3.3 Model

As shown in Figure fig. 3-1, the basic structure of the Deep Convolutional Inverse

Graphics Network (DC-IGN) consists of two parts: an encoder network which cap-

tures a distribution over graphics codes 𝑍 given data 𝑥 and a decoder network which

learns a conditional distribution to produce an approximation �̂� given 𝑍. 𝑍 can be a

disentangled representation containing a factored set of latent variables 𝑧𝑖 ∈ 𝑍 such

as pose, light and shape. This is important in learning a meaningful approximation of

a 3D graphics engine and helps tease apart the generalization capability of the model

with respect to different types of transformations.

Let us denote the encoder output of DC-IGN to be 𝑦𝑒 = 𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑥). The encoder

output is used to parametrize the variational approximation 𝑄(𝑧𝑖|𝑦𝑒), where 𝑄 is

chosen to be a multivariate normal distribution. There are two reasons for using this

parametrization:

1. Gradients of samples with respect to parameters 𝜃 of 𝑄 can be easily obtained

using the reparametrization trick proposed in (Kingma and Welling 2013)

22



observed 
image

Filters = 96
kernel size (KS) = 5

150x150

Convolution + Pooling

graphics code

x

Q(zi|x)

Filters = 64
KS = 5

Filters = 32
KS = 5

7200pose
light

shape

....
Filters = 32

KS = 7
Filters = 64

KS = 7
Filters = 96

KS = 7

P (x|z)

Encoder
(De-rendering)

Decoder
(Renderer)

Unpooling (Nearest Neighbor) + 
Convolution

{µ200,⌃200}

Figure 3-1: Model Architecture. Deep Convolutional Inverse Graphics Network
(DC-IGN) has an encoder and a decoder. We follow the variational autoencoder
(Kingma and Welling 2013) architecture with variations. The encoder consists of
several layers of convolutions followed by max-pooling and the decoder has several
layers of unpooling (upsampling using nearest neighbors) followed by convolution.
(a) During training, data 𝑥 is passed through the encoder to produce the poste-
rior approximation 𝑄(𝑧𝑖|𝑥), where 𝑧𝑖 consists of scene latent variables such as pose,
light, texture or shape. In order to learn parameters in DC-IGN, gradients are back-
propagated using stochastic gradient descent using the following variational object
function: −𝑙𝑜𝑔(𝑃 (𝑥|𝑧𝑖)) + 𝐾𝐿(𝑄(𝑧𝑖|𝑥)||𝑃 (𝑧𝑖)) for every 𝑧𝑖. We can force DC-IGN to
learn a disentangled representation by showing mini-batches with a set of inactive
and active transformations (e.g. face rotating, light sweeping in some direction etc).
(b) During test, data 𝑥 can be passed through the encoder to get latents 𝑧𝑖. Images
can be re-rendered to different viewpoints, lighting conditions, shape variations, etc
by setting the appropriate graphics code group 𝑧𝑖, which is how one would manipulate
an off-the-shelf 3D graphics engine.

𝜙1

𝛼1

𝛼

𝜙L
1

𝜙L

z[4,n]z = z3z2z1

𝜙corresponds to

Output

first sample in batch x1

from encoder to encoder

intrinsic properties (shape, texture, etc)

same as output for x1

z[4,n]z3z2z1

later samples in batch xi z[4,n]z3z2z1

unique for each 
xi in batch

zero error signal
for clamped outputs

zero error signal
for clamped outputs

error signal
from decoder

∇zk
i = zk

i - mean zk

Backpropagation

z[4,n]z3z2z1

z[4,n]z3z2z1

Backpropagation with 
invariance targeting

z[4,n]z3z2z1

k ∈ batch

k ∈ batch

Caption: Training on a minibatch in which only 𝜙, the azimuth angle of the face, 
changes.
During the forward step, the output from each component z_k != z_1 of the 
encoder is forced to be the same for each sample in the batch. This reflects the fact 
that the generating variables of the image which correspond to the desired values of 
these latents are unchanged throughout the batch. By holding these outputs 
constant throughout the batch, z_1 is forced to explain all the variance within the 
batch, i.e. the full range of changes to the image caused by changing 𝜙.

During the backward step, backpropagation of gradients happens only through the latent 
z_1, with gradients for z_k != z_1 set to zero. This corresponds with the clamped 
output from those latents throughout the batch.

Caption: In order to directly enforce invariance of the latents corresponding to 
properties of the image which do not change within a given batch, we calculate 
gradients for the z_k != z_1 which move them towards the mean of each 
invariant latent over the batch. This is equivalent to regularizing the 
latents z_{[2,n]} by the L2 norm of (zk - mean zk).

Figure 3-2: Structure of the representation vector. 𝜑 is the azimuth of the face,
𝛼 is the elevation of the face with respect to the camera, and 𝜑𝐿 is the azimuth of
the light source.

23



2. Various statistical shape models trained on 3D scanner data such as faces have

the same multivariate normal latent distribution (Paysan et al. 2009).

Given that model parameters 𝑊𝑒 connect 𝑦𝑒 and 𝑧𝑖, the distribution parameters

𝜃 = (𝜇𝑧𝑖 ,Σ𝑧𝑖) and latents 𝑍 can then be expressed as:

𝜇𝑧 = 𝑊𝑒𝑦𝑒

Σ𝑧 = diag(exp(𝑊𝑒𝑦𝑒))

∀𝑖, 𝑧𝑖 ∼ 𝒩 (𝜇𝑧𝑖 ,Σ𝑧𝑖)

We present a novel training procedure which allows networks to be trained to have

disentangled and interpretable representations.

3.3.1 Training with Specific Transformations

The main goal of this work is to learn a representation of the data which consists

of disentangled and semantically interpretable latent variables. We would like only a

small subset of the latent variables to change for sequences of inputs corresponding

to real-world events.

One natural choice of target representation for information about scenes is that

already designed for use in graphics engines. If we can deconstruct a face image by

splitting it into variables for pose, light, and shape, we can trivially represent the same

transformations that these variables are used for in graphics applications. Fig. 3-2

depicts the representation which we will attempt to learn.

With this goal in mind, we perform a training procedure which directly targets this

definition of disentanglement. We organize our data into mini-batches corresponding

to changes in only a single scene variable (azimuth angle, elevation angle, azimuth

angle of the light source); these are transformations which might occur in the real

24



Forward Backward

Encoder

Decoder

out  =  mean zk
k ∈ batchi i

grad  = zk mean zk
k ∈ batchi i iz[4,n]z3z2z1

out1 = z1

grad1 = ∇z1

∇out1

Encoder

Decoder

clamped

unclamped

Figure 3-3: Training on a minibatch in which only 𝜑, the azimuth angle of the
face, changes. During the forward step, the output from each component 𝑧𝑖 ̸= 𝑧1 of
the encoder is altered to be the same for each sample in the batch. This reflects the
fact that the generating variables of the image (e.g. the identity of the face) which
correspond to the desired values of these latents are unchanged throughout the batch.
By holding these outputs constant throughout the batch, the single neuron 𝑧1 is forced
to explain all the variance within the batch, i.e. the full range of changes to the image
caused by changing 𝜑. During the backward step 𝑧1 is the only neuron which receives
a gradient signal from the attempted reconstruction, and all 𝑧𝑖 ̸= 𝑧1 receive a signal
which nudges them to be closer to their respective averages over the batch. During
the complete training process, after this batch, another batch is selected at random;
it likewise contains variations of only one of 𝜑, 𝛼, 𝜑𝐿, 𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐; all neurons which do
not correspond to the selected latent are clamped; and the training proceeds.

25



world. We will term these the extrinsic variables, and they are represented by the

components 𝑧1,2,3 of the encoding.

We also generate mini-batches in which the three extrinsic scene variables are held

fixed but all other properties of the face change. That is, these batches consist of many

different faces under the same viewing conditions and pose. These intrinsic properties

of the model, which describe identity, shape, expression, etc., are represented by

the remainder of the latent variables 𝑧[4,200]. These mini-batches varying intrinsic

properties are interspersed stochastically with those varying the extrinsic properties.

We train this representation using SGVB, but we make some key adjustments to

the outputs of the encoder and the gradients which train it. The procedure (Fig. 3-3)

is as follows.

1. Select at random a latent variable 𝑧𝑡𝑟𝑎𝑖𝑛 which we wish to correspond to one of

{azimuth angle, elevation angle, azimuth of light source, intrinsic properties}.

2. Select at random a mini-batch in which that only that variable changes.

3. Show the network each example in the minibatch and capture its latent repre-

sentation for that example 𝑧𝑘.

4. Calculate the average of those representation vectors over the entire batch.

5. Before putting the encoder’s output into the decoder, replace the values 𝑧𝑖 ̸=
𝑧𝑡𝑟𝑎𝑖𝑛 with their averages over the entire batch. These outputs are “clamped”.

6. Calculate reconstruction error and backpropagate as per SGVB in the decoder.

7. Replace the gradients for the latents 𝑧𝑖 ̸= 𝑧𝑡𝑟𝑎𝑖𝑛 (the clamped neurons) with

their difference from the mean (see Sec. 3.3.2). The gradient at 𝑧𝑡𝑟𝑎𝑖𝑛 is passed

through unchanged.

8. Continue backpropagation through the encoder using the modified gradient.

Since the intrinsic representation is much higher-dimensional than the extrinsic

ones, it requires more training. Accordingly we select the type of batch to use in a

ratio of about 1:1:1:10, azimuth : elevation : lighting : intrinsic; we arrived at this

ratio after extensive testing, and it works well for both of our datasets.

This training procedure works to train both the encoder and decoder to represent

26



certain properties of the data in a specific neuron. By clamping the output of all but

one of the neurons, we force the decoder to recreate all the variation in that batch

using only the changes in that one neuron’s value. By clamping the gradients, we

train the encoder to put all the information about the variations in the batch into

one output neuron.

3.3.2 Invariance Targeting

By training with only one transformation at a time, we are encouraging certain neu-

rons to contain specific information; this is equivariance. But we also wish to explicitly

discourage them from having other information; that is, we want them to be invariant

to other transformations. Since our mini-batches of training data consist of only one

transformation per batch, then this goal corresponds to having all but one of the

output neurons of the encoder give the same output for every image in the batch.

To encourage this property of the DC-IGN, we train all the neurons which corre-

spond to the inactive transformations with an error gradient equal to their difference

from the mean. It is simplest to think about this gradient as acting on the set of sub-

vectors 𝑧𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 from the encoder for each input in the batch. Each of these 𝑧𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒’s

will be pointing to a close-together but not identical point in a high-dimensional

space; the invariance training signal will push them all closer together. We don’t care

where they are; the network can represent the face shown in this batch however it

likes. We only care that the network always represents it as still being the same face,

no matter which way it’s facing. This regularizing force needs to be scaled to be much

smaller than the true training signal, otherwise it can overwhelm the reconstruction

goal. Empirically, a factor of 1/100 works well.

3.4 Experiments

We trained our model on about 12,000 batches of faces generated from a 3D face

model obtained from Paysan et al. (2009), where each batch consists of 20 faces with

random variations on face identity variables (shape/texture), pose, or lighting. We

27



Figure 3-4: Manipulating light. Qualitative results showing the generalization
capability of the learned DC-IGN decoder to re-render a single input image under
different lighting conditions. We change the latent 𝑧𝑙𝑖𝑔ℎ𝑡 smoothly leaving all 199
other latents unchanged.

28



used the rmsprop (Tieleman and Hinton 2012) learning algorithm during training and

set the meta learning rate equal to 0.0005, the momentum decay to 0.1 and weight

decay to 0.01.

Figure 3-5: Manipulating elevation. Results showing the ability of the DC-IGN
decoder to change the elevation of the input image. We change the latent 𝑧𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛
smoothly leaving all 199 other latents unchanged.

To ensure that these techniques work on other types of data, we also trained

networks to perform reconstruction on images of widely varied 3D chairs from many

perspectives derived from the Pascal Visual Object Classes dataset as extracted by

Aubry et al. (Mottaghi et al. 2014, Aubry et al. (2014)). This task tests the ability

of the DC-IGN to learn a rendering function for a dataset with high variation between

the elements of the set; the chairs vary from office chairs to wicker to modern designs,

and viewpoints span 360 degrees and two elevations. These networks were trained

with the same methods and parameters as the ones above.

29



Figure 3-6: Manipulating azimuth (horizontal angle). Qualitative results show-
ing the generalization capability of the learnt DC-IGN decoder to render original
static image with different azimuth (pose) directions. The latent neuron 𝑧𝑎𝑧𝑖𝑚𝑢𝑡ℎ is
changed to random values but all other latents are clamped.

30



3.4.1 3D Face Dataset

The decoder network learns an approximate rendering engine as shown in Fig. 3-4.

Given a static test image, the encoder network produces the latents 𝑍 depicting scene

variables such as light, pose, shape etc. Similar to an off-the-shelf rendering engine,

we can independently control these to generate new images with the decoder. For

example, as shown in Fig. 3-4, given the original test image, we can vary the lighting

of an image by keeping all the other latents constant and varying 𝑧𝑙𝑖𝑔ℎ𝑡. It is perhaps

surprising that the fully-trained decoder network is able to function as a 3D rendering

engine, and this capability is proof that the representation learned by the DC-IGN is

disentangled.

We also quantitatively illustrate the network’s ability to represent pose and light

on a smooth linear manifold as shown in Fig. 3-7, which directly demonstrates our

training algorithm’s ability to disentangle complex transformations. In these plots,

the inferred and ground-truth transformation values are plotted for a random subset of

the test set. Interestingly, as shown in Fig. 3-7, the encoder network’s representation

of azimuth has a discontinuity at 0∘ (facing straight forward).

3.4.2 Comparison with Entangled Representations

To explore how much of a difference the DC-IGN training procedure makes, we com-

pare the novel-view reconstruction performance of networks with entangled represen-

tations (baseline) versus disentangled representations (DC-IGN). The baseline net-

work is identical in every way to the DC-IGN, but was trained with SGVB without

using our proposed training procedure. As in Fig. 3-6, we feed each network a single

input image, then attempt to use the decoder to re-render this image at different

azimuth angles. To do this, we first must figure out which latent of the entangled

representation most closely corresponds to the azimuth. This we do rather simply.

First, we encode all images in an azimuth-varied batch using the baseline’s encoder.

Then we calculate the variance of each of the latents over this batch. The latent with

the largest variance is then the one most closely associated with the azimuth of the

31



Figure 3-7: Generalization of decoder to render images in novel viewpoints
and lighting conditions. We generated several datasets by varying light, azimuth
and elevation, and tested the invariance properties of DC-IGN’s representation 𝑍.
We show quantitative performance on three network configurations as described in
Sec. 3.4.1. All DC-IGN encoder networks reasonably predicts transformations from
static test images. Interestingly, as seen in the first plot, the encoder network seems
to have learnt a switch node to deal uniquely with the mirror-symmetric sides of the
face.

32



Figure 3-8: Entangled versus disentangled representations. First column:
Original images. Second column: transformed image using DC-IGN. Third column:
transformed image using normally-trained network.

face, and we will call it 𝑧𝑎𝑧𝑖𝑚𝑢𝑡ℎ. Once that is found, the latent 𝑧𝑎𝑧𝑖𝑚𝑢𝑡ℎ is varied for

both the models to render a novel view of the face given a single image of that face.

Fig. 3-8 shows that explicit disentanglement is critical for novel-view reconstruction.

3.4.3 Chair Dataset

We performed a similar set of experiments on the 3D chairs dataset described above.

This dataset contains still images rendered from 3D CAD models of 1357 different

chairs, each model skinned with the photographic texture of the real chair. Each of

these models is rendered in 60 different poses; at each of two elevations, there are

30 images taken from 360 degrees around the model. We used approximately 1200

of these chairs in the training set and the remaining 150 in the test set; as such,

the networks had never seen the chairs in the test set from any angle, so the tests

explore the networks’ ability to generalize to arbitrary chairs. We resized the images

to 150 × 150 pixels and made them grayscale to match our face dataset.

We trained these networks with the azimuth (flat rotation) of the chair as a dis-

33



Figure 3-9: Manipulating rotation: Each row was generated by encoding the
input image (leftmost) with the encoder, then changing the value of a single latent
and putting this modified encoding through the decoder. The network has never seen
these chairs before at any orientation. Top: Some positive examples. Note that the
DC-IGN is making a conjecture about any components of the chair it cannot see; in
particular, it guesses that the chair in the top row has arms, because it can’t see that
it doesn’t. Bottom: Examples in which the network extrapolates to new viewpoints
less accurately.

34



entangled variable represented by a single node 𝑧1; all other variation between images

is undifferentiated and represented by 𝑧[2,200]. The DC-IGN network succeeded in

achieving a mean-squared error (MSE) of reconstruction of 2.7722× 10−4 on the test

set. Each image has grayscale values in the range [0, 1] and is 150 × 150 pixels.

In Fig. 3-9 we have included examples of the network’s ability to re-render previously-

unseen chairs at different angles given a single image. For some chairs it is able to

render fairly smooth transitions, showing the chair at many intermediate poses, while

for others it seems to only capture a sort of “keyframes” representation, only having

distinct outputs for a few angles. Interestingly, the task of rotating a chair seen only

from one angle requires speculation about unseen components; the chair might have

arms, or not; a curved seat or a flat one; etc.

35



4. Disentanglement in Computation

4.1 Introduction

While the learning of representation in fields such as vision and language have been

extensively studied, representations in computation have only recently begun to be

studied.

Instead of thinking about data, like images or text, representations of computation

are about representing procedures, computation itself. Instead of representing an

image, we might represent a transformation of that image, like rotating every object

in it by 90°. Instead of representing the words in an English phrase, we might represent

a program which translates it into French.

Every neural network can be thought of as a representation of a computation. The

weights and nonlinearities in the networks combine to transform some input data to

some output data; in action they are a function from an input domain to an output

domain, and in storage they represent this function. The famous ImageNet network

by Krizhevsky et al. (2012), for example, contains 60 million parameters which, along

with their connectivity, define a function from an input domain of 256x256x3 image

to a 1x1000 distribution over labels.

Applying our desiderata for representations, let us consider the quality of this

60-million-weight representation for a function which classifies images.

1. Disentangled: Just as any representation of data should be sparse over real

transformations, the representation of the transformation itself should be sparse.

The only clear factorization of the computation represented by a feedforward

36



neural network is the factorization into layers. Each layer of the network rep-

resents a large matrix multiplication, and the function computed is the same

for all inputs. This representation for computation is not at all sparse over its

inputs, for the entire computation is performed no matter what the input is.

2. Interpretable: Neural networks are famously hard to interpret. Researchers

have developed whole classes of techniques for analyzing them, which use gra-

dient ascent to visualize specific units of the network (Erhan et al. 2009),

occlusions of the input to analyze significance (Zeiler and Fergus 2014), or in-

verting their functions to visualize their information preservation (Mahendran

and Vedaldi 2014). These techniques speak to the deeply uninterpretable nature

of neural representations of computation.

3. Performant: Deep neural networks currently hold the accuracy records in

almost every large-N dataset of image recognition, object localization, and

phoneme recognition benchmark. In particular, this network set the record

for ImageNet performance with an error rate more than 40% lower than any

other entry.

4. Reusable: While substantial reuse of pretrained copies of this network has

been made, such reuse is by no means simple. Typically the top half of the

network is completely removed and another is trained (quite expensively) in

its place; in other use cases the lower-level features generated by the first few

layers of the network have been used directly as an embedding of the input

space, with very mixed results. Compared with a more modular design, which

might have separate components for localizing salient objects and determining

various salient information about them (size, color, animacy, shape, context)

this representation is quite hard to reuse.

5. Compact: This model contains 60 million parameters. It occupies hundreds of

megabytes on disk when compressed. While those numbers sound large, it is not

immediately clear if this is very large or very compact for a model which contains

37



all necessary information for determining the contents of arbitrary images.

While this model performs extremely well, and might (in bad lighting, with the

right Instagram filter) be considered compact, it is very far from ideal in disentan-

glement, interpretability, and reusability. Just by disentangling the computation in

this model, factorizing it into modules, its interpretability and reusability would be

hugely improved.

If, for example, this network were disentangled by having a module which deter-

mined whether a scene was indoors or outdoors and a separate classifier for each of

those cases, we would gain several advantages:

• The indoor/outdoor classifier would be immediately comprehensible.

• The indoor/outdoor classifier could be reused in other tasks.

• The location-specific object classifiers could be more easily interpreted (e.g. you

would be very surprised if the indoor classifier predicted a train, or a gorilla).

• The location-specific object classifiers would generate intermediate features which

were more diagnostic for other tasks in their given location.

To make an unfair comparison, let’s use our desiderata to consider the quality of

a Python representation of the computation of the FizzBuzz problem:

def divisible_by_five(n):

return n % 5 == 0

def divisible_by_three(n):

return n % 3 == 0

def fizzbuzz(n):

result =

if divisible_by_three(n):

result += fizz

if divisible_by_five(n):

38



result += buzz

return result

def fizzbuzz_string(length):

result_list = map(fizzbuzz, range(1, length + 1))

return \n.join(result_list)

print(fizzbuzz_string(100))

1. Disentangled: This computation has been factorized into a number of distinct

subcomponents, each of which is very small and can be used in multiple places.

They do not depend on the state of the overall program, and have very low-

dimensional and clearly-defined inputs and outputs. Simple operators such as

+= or % are composed into larger ones, and the contribution from each is very

clear.

2. Interpretable: This representation can be easily read by anyone who knows

how to program, and most of it could be understood even by people who don’t.

3. Performant: While this code will make no errors on the task, this is not a

meaningful question on a toy task.

4. Reusable: Individual components of this code represent functions which could

be used elsewhere or for variants of this task. It would be trivial to use

divisible_by_three anywhere else its functionality is needed, and the other

functions can similarly be reused to generate FizzBuzz solutions of any length.

5. Compact: This representation occupies 370 bytes.

Our ideal representation of a computation would share the learnability and per-

formance on hard problems of the deep network without giving up the goals of dis-

entanglement and reuse quite so completely as the deep network does.

39



4.1.1 Catastrophic forgetting

One of the clearest demonstrations of the weakness of highly-entangled neural network

representations of computation is catastrophic forgetting.

With the recent success of deep learning methods in many fields, efforts have been

made to apply deep learning techniques to multitask learning problems. Deep learning

is at the deepest level a method for hierarchically extracting good representations from

complex data, with the higher levels of a network capturing increasingly abstract

representations of the data. As such, deep learning seems naively to be a promising

direction for multitask learning; abstract representations of the data should be useful

for many related tasks, and the network should be able to simply not use any which

are not helpful.

This theory has been borne out for simple, highly coupled tasks such as evaluating

sentiment of reviews for different categories of products (Glorot, Bordes, and Bengio

2011). A more wide-ranging survey of deep learning methods for transfer and multi-

task learning shows that some classes of models are able to improve their performance

on the original, clean dataset after being shown perturbed or distorted versions of the

same data (Bengio 2012).

However, even small changes in the task result in substantial changes to the op-

timal features, especially at high levels of the network (Yosinski et al. 2014). This

can lead to catastrophic forgetting, in which the network “unlearns” one task as it

trains on another one. A recent set of experiments (Goodfellow et al. 2013) detail

the tradeoff curve for performance on one task versus performance on the other task

for both similar and dissimilar tasks. They show that for networks trained on two

tasks, improvement on one task comes at a cost to performance on another.

This occurs because of the highly entangled nature of the computation carried

out by these networks. When the network which is able to solve two different tasks

is retrained on just one, it gradually mutates the calculations which are necessary in

both of the tasks, until eventually it has repurposed them entirely for the use of the

first task. What this system needs is a clear separation of concerns. If some functional

40



elements of the network were used only for one task, those elements would be safe to

mutate at a high rate during training on that task. Similarly, those elements which

were used across many tasks could change only very gradually, ensuring that even

if one task is neglected for an extended period, the components it uses won’t have

diverged too greatly from their original state.

In more specific terms, the problem is that each weight in the network receives gra-

dients of a similar magnitude when training on either task. And with no parameters

“reserved” for a specific task, that task is quickly forgotten.

4.2 Related Work

Until recently, work in this domain has largely centered around either a) learning

programs in a fixed representation language, or b) jointly learning a program and

its representation in e.g. a neural network, but with little attention focus on the

representation itself. In particular, Liang et al. (Liang, Jordan, and Klein 2010)

propose to learn programs via Bayesian inference with a grammar over a hierarchical

structure. Zaremba et al. (2014) use an LSTM (Hochreiter and Schmidhuber 1997)

to predict the output of simple programs written in Python; their effectiveness is

remarkable, but the induced representation is so poor that the authors comment,

“We do not know how heavily our model relies on memorization and how far the

learned algorithm is from the actual, correct algorithm.”

A classic model that attempts to disentangle computation is the mixture of ex-

perts (Jacobs, Jordan, and Barto 1991). However, as originally described this model

was not especially successful at learning distinct functions for each expert; this led

to a modification of the design which used sampling instead of weighting using the

gating values (Jacobs et al. 1991). This modified design resulted in nicely decou-

pled functions, but was much harder to train. Addressing this problem was a core

inspiration for my work.

In the last year, work on learning structured representations of computation has

become a popular topic. (Neelakantan, Le, and Sutskever 2015) augment a neural

41



network with a small set of hard-coded external operations which the network learns

to use in multistep programs. (Reed and Freitas 2015) propose a very general model

which similarly can use external programs, but with the addition of a call stack;

however, this model requires strong supervision to train explicitly with the correct

program trace, and as such is learning to recreate an existing program representa-

tion. (Zaremba et al. 2015) use an external memory with pointers to learn routines

for interacting with external data. (Graves, Wayne, and Danihelka 2014) perform

complex operations on sequences such as sorting or repeatedly copying by using a

differentiable content-based addressing mechanism to read and write to an external

memory.

4.3 Controller-function networks

Figure 4-1: The controller and layers of the controller-function network
(CFN). The controller provides weights on each layer as a function of the data. This
shows three layers, but there can be many more.

The proposed model, the controller-function network (CFN) generates an output

for a particular timestep via the following steps (shown in Fig. 4-1):

1. The input tensor is fed into the controller

42



2. The controller decides which layers are most appropriate for processing this

input

3. The controller outputs a weighting vector reflecting how much output it wants

from each of the layers

4. The input tensor is fed into each layer (in parallel)

5. The outputs from each layer are multiplied by their respective weights from the

controller

6. The weighted outputs from all the layers are summed together and output. This

is the output of the whole network for this timestep.

Essentially the idea is that at each timestep, the controller examines the input

that it gets, then produces a distribution over the activities of the various “functions”

(single-layer NNs) which would best deal with this input. Since the controller is an

LSTM, it can store information about the inputs it has received before, meaning that

in a time series or language setting it can make weighting decisions contextually.

Each of the “function” layers is a single-layer network with a PReLU activation

function (He et al. 2015). The input and output dimension of these functions is

always the same, and corresponds to the desired output dimension of the network as

a whole.

As this model is differentiable throughout, it can be trained with the standard

backpropagation through time (BPTT) algorithm for stochastic gradient descent.

By setting weights over each of the layers in the network, the controller scales not

only the output of each layer, but also the error gradient that it receives. This means

that in a given timestep, the layers which have very low weights on their output will

be nearly unchanged by the learning process. That is, functions which are not used

are not forgotten.

In an ordinary feedforward neural network, the only way for the network to prevent

learning in a particular node is for it to learn connection strengths very near zero for

that node. This takes many training examples, and functionally removes that node

from the computation graph.

This system, by comparison, can decide that a set of nodes is or is not relevant

43



on an input-by-input basis.

4.3.1 Relationship to mixture of experts

This architecture is closely related to the mixture of experts model proposed by Jacobs

et al. (1991), in which several different task-specific “expert” networks each contribute

in linear combination to the output of the overall network.

However, this model has two key differences from the mixture of experts:

1. The gating network is an LSTM. This means that the gating network (or

controller, in my terminology) can easily learn fixed sequential procedures for

certain types of input. This allow the model to be iterated for several steps,

composing its operations into more complex ones. See Sec. 5.2.1 for a description

of this usage.

2. The training results in decoupled functions. I employ a novel continuation

method for training the CFN that allows for easy training, yet results in a final

representation which uses only one “expert” at a time with no overlap.

4.3.2 Hard and soft decisions

Training neural models which make “hard” decisions can be quite challenging; in the

general case, such models must be trained by REINFORCE-like gradient estima-

tion methods (Williams 1992). Yet under many circumstances, such hard decisions

are necessary for computational considerations; in fully-differentiable models such

as the NTM (Graves, Wayne, and Danihelka 2014) or end-to-end memory networks

(Sukhbaatar et al. 2015), the computational complexity of a single evaluation in-

creases linearly with the size of the memory. These “soft” decisions involve considering

every possible option.

In more complex computational tasks, such as those faced by (Reed and Freitas

2015), there may be a large number of steps before any result is produced by the

model, and each step can require a discrete action (move the pointer either left or

right; move the model either up or down). Such models naïvely have branching which

44



is exponential of the form 𝑂(𝑘𝑡), where 𝑘 is the number of options at each timestep,

and 𝑡 is the number of timesteps before producing an output. Using a REINFORCE

algorithm to estimate the true gradient is possible, but slow and unreliable (Zaremba

and Sutskever 2015). This branching factor is what led (Reed and Freitas 2015) to

adopt their strongly-supervised training technique.

A straightforward (if inelegant) solution is to composite the outcome from all of

these branches at the end of each timestep. For example, a pointer could be modeled

as interpolating between two memory cells instead of having a discrete location. Then

when the controller produces the distribution of actions “left 0.7, right 0.3”, the model

can move the pointer left by 0.7 instead of sampling from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7).

While such techniques, make the learning process tractable when available, they

result in much more highly entangled representations (e.g. reading from a every loca-

tion in a memory at once). Furthermore, they must always incur a complexity cost

linear in the number of options, just as the memory models have cost linear in the

number of options of memory locations to read from.

In especially challenging environments, this solution is not available. For example,

in classic reinforcement learning tasks, the agent may only be in a situation once, and

it cannot 70% fly to Germany or 20% accept a PhD position.

The CFN exists in the space of models for which this soft-decision solution is

available. While in the ideal case we would like to select exactly one function to use

at each timestep, this problem is quite difficult to optimize, for early in training the

functions are not yet differentiated. By contrast, the soft-decision version which uses

a weighted sum of the outputs of each function learns quite quickly. However, the

solutions produced by this weighted sum training are highly entangled and always

involve a linear combination of all the functions, with no clear differentiation.

From scratch, we can either train a system that works, or a system that has good

representations. What we need is a way to go from a working solution to a good

solution.

45



4.3.3 Continuation methods

Continuation methods are a widely-used technique for approaching difficult optimiza-

tion problems.

In optimization by continuation, a transformation of the nonconvex func-

tion to an easy-to-minimize function is considered. The method then pro-

gressively converts the easy problem back to the original function, while

following the path of the minimizer. (Mobahi and Fisher III 2015)

As described in (Mobahi and Fisher III 2015), continuations include ideas as ubiq-

uitous as curriculum learning or deterministic annealing, and that paper provides an

extensive list of examples. In the quest for good solutions to hard-decision problems,

continuation methods are a natural tool.

4.3.4 Training with noisy decisions

In order to construct a continuation between soft and hard decisions, the CFN com-

bines two tools: weight sharpening and noise.

Weight sharpening is a technique used by (Graves, Wayne, and Danihelka 2014),

which works by taking a distribution vector of weights 𝑤 ∈ [0, 1]𝑛, and a sharpening

parameter 𝛾 ≥ 1 and transforming 𝑤 as follows:

𝑤′
𝑖 =

𝑤𝛾
𝑖∑︀

𝑗 𝑤
𝛾
𝑗

By taking this [0, 1]𝑛 vector to an exponent, sharpening increases the relative

differences between the weights in 𝑤. Renormalizing makes 𝑤 a distribution once

again, but now it has been stretched; large values are larger, i.e. the modes have

higher probability. In the CFN, I take one further step: adding noise.

𝑤′
𝑖 =

(︀
𝑤𝑖 + 𝒩 (0, 𝜎2)

)︀𝛾∑︀
𝑗 𝑤

𝛾
𝑗

46



During the training of the CFN, sharpening is applied to the vector of weights

produced by the controller, and the sharpening parameter 𝛾 is gradually increased on

a schedule. By itself, this would not transform the outputs of the controller, as it can

simply learn the inverse function to continue to produce the same output. However,

the addition of noise before sharpening makes similar weights highly unstable. For

example, if the network intended to produce a weighting of [0.5, 0.5], noise would

interfere:

[0.49, 0.51]100

(0.49100 + 0.51100)
= [0.018, 0.982]

At the end of training, this forces the CFN to either make a hard decision or face

massive uncertainty in its output. By slowly increasing the sharpening parameter on

a schedule, the controller can gradually learn to make harder and harder decisions.

In practice this method works very well, resulting in perfectly binary decisions at the

end of training and correct factorization of the primitives, each into its own function

layer.

4.4 Experiments

In order to carefully test the ability of various techniques to correctly factorize several

presented problems, I constructed a simple dataset of vector functions, inputs, and

outputs. These functions are detailed in Tbl. 4.1. In the following experiments, these

functions are applied to random input vectors in [0, 1]10.

Since the inputs to all of these functions are indistinguishable, without any extra

information it would be impossible for any system to achieve results better than

averaging the output of all these functions. Therefore, along with the input vector,

all systems receive a one-hot vector containing the index of the primitive to compute.

Each system must learn to interpret this information in its own way. In the CFN, this

metadata is passed only to the controller, which forces it to use different functions

for different inputs.

While this is on the surface a supervised learning task (given some input, produce

47



exactly this output), the much more interesting interpretation of the task is unsuper-

vised. The true goal of this task is to learn a representation of computation which

mirrors the true factorization of the functions which generated this data. If we are

interested in disentangled representations, we should look for systems which activate

very distinct units for each of these separate computations.

Table 4.1: Primitive functions. The true test of a

learned model is how distinctly the model manages to

represent these functions, not the exact error number.

Outputs shown for the input vector [1 2 3 4 5 6 7 8].

Operation Description Output

rotate Move each element of the vector right one

slot. Move the last component to the first

position.

[8 1 2 3 4 5 6 7]

add-a-b Add the second half of the vector to the first. [6 8 10 12 5 6 7 8]

rot-a Rotate only the first half of the vector. [4 1 2 3 5 6 7 8]

switch Switch the positions of the first and second

halves of the vector.

[5 6 7 8 1 2 3 4]

zero Return the zero vector. [0 0 0 0 0 0 0 0]

zero-a Zero only the first half of the vector. [0 0 0 0 5 6 7 8]

add-one Add 1 to the vector. [2 3 4 5 6 7 8 9]

swap-first Swap the first two elements of the vector. [2 1 3 4 5 6 7 8]

4.4.1 Disentanglement of functions

In order to directly test how disentangled the CFN’s representations are, I analyzed

the weights given to each function in the network throughout the training process.

In the ideal case, the distribution would be entirely concentrated on one function at

a time; this would indicate that the network has perfectly decoupled their functions.

48



Figure 4-2: Disentanglement and validation loss plotted over the course of train-
ing. Disentanglement, or independence, is measured by the L2 norm of the weight
vector over the functions. In this measure, 0.35 is totally entangled, with every
function accorded equal weight for every input, and 1.0 is totally disentangled, with
precisely one function used for each input. Left: with sharpening and noise. Right:
without sharpening and noise.

49



Since no two functions are the same, and they each have the same input domain, no

one function layer can correctly compute two of them.

The results of this analysis are presented in Fig. 4-2. By using the continuation

method described in Sec. 4.3.3, the CFN is able to very rapidly learn a disentangled

representation of the functions in the data with no penalty to performance. By com-

parison, a network of the same architecture trained without the noise and sharpening

technique can also produce the same output, but its representation of the computation

is very highly entangled.

4.4.2 Catastrophic forgetting

To test the CFN’s resistance to the forgetting problems which have plagued deep

methods, I trained a controller-function network and a feedforward network to con-

vergence on the full dataset, including all eight vector functions. The feedforward

network was densely connected, with three linear layers of dimension 18, 100, and 10,

with PReLu non-saturating activations in between.

After training each of these networks on the full dataset, I then set them to train-

ing on a dataset consisting of data from only one of the primitive functions. Both

networks were retrained with the same learning rate and other hyperparameters. Pe-

riodically, I evaluated both networks’ performance against a validation set consisting

of data generated by all of the other functions. As depicted in Fig. 4-3, the feedfor-

ward neural network experienced increasing loss over the course of training. These

results are typical of neural methods. By contrast, the controller-function network has

practically no forgetting behavior at all; the controller is assigning near-zero weights

to all functions except the correct one, and as a result they receive gradients very

near zero and do not noticeably update.

This result is especially compelling given the difference in parameter dimensional-

ity of these two models; while the feedforward network has 13013 parameters, the CFN

has better performance and better resistance to forgetting with only 2176. Though

feedforward models with fewer parameters have worse forgetting behavior, the struc-

ture of the CFN representation allows for a very good memory.

50



Figure 4-3: Forgetting when trained on one task. When a traditional feedfor-
ward network, which previously trained on several tasks, is trained exclusively on one,
it forgets how to perform the others. The controller-function network is practically
immune to forgetting. In this figure, we see each network trained exclusively on one
of several tasks it is able to do. The loss that is shown is the average L2 error attained
on all of the other tasks as this network retrains.

51



5. Discussion

5.1 DC-IGN

We have shown that it is possible to train a deep convolutional inverse graphics

network with a fairly disentangled, interpretable graphics code layer representation

from static images. By utilizing a deep convolution and de-convolution architecture

within a variational autoencoder formulation, our model can be trained end-to-end

using back-propagation on the stochastic variational objective function (Kingma and

Welling 2013). We proposed a training procedure to force the network to learn dis-

entangled and interpretable representations. Using 3D face and chair analysis as a

working example, we have demonstrated the invariant and equivariant characteristics

of the learned representations.

Such a representation is powerful because it teases apart the true generating fac-

tors for images. Unlike a traditional deep representation, the representation generated

by the DC-IGN separates the innate properties of an object from the results of its

particular lighting and position. This brings us ever so slightly closer to a truly

human-like understanding of 3D scenes, in which we use our knowledge of the struc-

ture of the world to correctly interpret the contributions to an image from depth,

lighting, deformation, occlusion, and so much more. It is essential that our represen-

tations have this structure, as it allows incredible feats of imagination and prediction

that current machine learning systems cannot even approach.

52



5.1.1 Future work

To scale our approach to handle more complex scenes, it will likely be important to

experiment with deeper architectures in order to handle large number of object cate-

gories within a single network architecture. It is also very appealing to design a spatio-

temporal based convolutional architecture to utilize motion in order to handle com-

plicated object transformations. Importance-weighted autoencoders (Burda, Grosse,

and Salakhutdinov 2015) might be better able to capture more complex probabilis-

tic structure in scenes. Furthermore, the current formulation of SGVB is restricted

to continuous latent variables. However, real-world visual scenes contain unknown

number of objects that move in and out of frame. Therefore, it might be necessary to

extend this formulation to handle discrete distributions (Kulkarni, Saeedi, and Ger-

shman 2014) or extend the model to a recurrent setting. The decoder network in our

model can also be replaced by a domain-specific decoder (Nair, Susskind, and Hinton

2008) for fine-grained model-based inference.

In scenes with greater multimodal structure, perhaps in the future it may be

possible to impose similar structure on the representation of a Deep Convolutional

Generative Adversarial Network (Radford, Metz, and Chintala 2015). These models

seem to have the ability to capture much more complicated distributional structure

than the simple Gaussian of the variational autoencoder.

5.2 Controller-function networks

With the design of controller-function networks, I have provided a modern take on

the mixture of experts model and shown that it is possible learn highly disentangled

representations of computation. Furthermore, I have shown that at least in some

cases, doing so imposes no performance penalty on the system. These experiments

have also demonstrated that disentangled representations of computation are much

more resistant to the perennial problem of catastrophic forgetting, which has plagued

neural methods since their inception.

53



5.2.1 Future work

Multi-step variant

Figure 5-1: Multistep CFN. A variant of the design for using multiple timesteps
(in this case, two) to calculate each output.

One obvious question to consider about this model is, “What happens if the correct

output function at a timestep is not computable with a linear combination of single-

layer networks?” After all, there are functions computable by a polynomial-width

network of depth k that require exponential width to compute with a network of

depth k-1 (Hastad 1986).

To address this question, the system could be run for a predefined number of steps

between outputs. That is,

1. Feed the system the input for “real-world” time t and save the output

2. Repeat k times:

a. Feed the system its own most recent output

3. Take the kth output of the system as its answer for time t

4. Repeat from 1. for time t+1

54



This amounts to making the network deeper, in that more layers of computa-

tion and nonlinearity lie between the input and the output. This gives it the same

computational power of a k-depth model.

While correctly learning the full latent factorization of data from deeply-composed

observations may be quite difficult, we can persist in the theme of continuation learn-

ing and train such a system with a curriculum, learning first to do one-step compu-

tations, then two, three, and so forth until we have quite a complex model while still

preserving the disentangled nature of our representation. Various experiments done

by (Bengio et al. 2009, Zaremba and Sutskever (2014), Reed and Freitas (2015)),

among many others, have shown using curricula with increasing complexity to be

extremely effective.

Complex metadata

While in the experiments described here the metadata given to the controller is quite

simple, the possibilities for the future are rich. In the most straightforward case,

the controller could read in source code for a program one character at a time, then

predict a sequence of activations to compose the program it has read out of primitive

functions in the manner described in Sec. 5.2.1.

Even richer representations are also possible. The controller might for example

look at two images, then predict a series of structured transformations to turn one

into the other.

Non-differentiable functions

One unexplored capability of the controller-function network is that the controller can

produce weightings over “functions” or actions which are not differentiable, while still

being trained itself by backpropagation. This is due to the structure of the output

function:

𝑂𝑢𝑡 =
𝐹∑︁
𝑖=1

𝐶(𝑥)𝑖𝑓𝑖(𝑥))

55



𝛿𝑂𝑢𝑡

𝛿𝐶𝑖

= 𝑓𝑖(𝑥)

The gradient of the controller does not depend on the gradient of the functions.

As a result, the functions that the controller uses could be non-differentiable, ordinary

handwritten programming functions. They could even be actions in the world, as long

as those actions have a continuous representation, e.g. tighten_left_calf(force).

This convenient fact also has computational implications; if one were to construct

a hierarchy of CFNs, such that a higher-level CFN provides weights on the functions

computed by lower-level ones, all gradients could be computed simultaneously and

independently. This provides an interesting avenue for future research in hierarchical

computation.

5.3 Unification

Perhaps the most exciting direction for future work is the bringing together of these

two different techniques in order to build a completely unsupervised system for infer-

ring the factors of variation in the world and using that structure to represent and

predict videos.

Instead of using our knowledge of the active transformations over a short video,

we could train a controller network to weight many different transformations for

each frame. Then, using the same continuation methods described in this paper, we

could sharpen those weightings gradually over the course of training, resulting in a

representation of real video which is extremely sparse. Such a representation might be

able to capture the true generative structure of simple scenes without any supervision

at all, learning dimensions of variation which are most common in the real world.

I look forward to continuing my work on building systems which can understand

the factors of variation in the world, and I hope that this thesis provides some small

help and inspiration to others in the field.

56



References

Aubry, Mathieu, Daniel Maturana, Efros Alexei, Bryan Russell, and Josef Sivic. 2014.

“Seeing 3D Chairs: Exemplar Part-Based 2D-3D Alignment Using a Large Dataset

of CAD Models.” In CVPR.

Bengio, Yoshua. 2009. “Learning Deep Architectures for AI.” Foundations and

Trends in Machine Learning 2 (1). Now Publishers Inc.: 1–127.

———. 2012. “Deep Learning of Representations for Unsupervised and Transfer

Learning.” Unsupervised and Transfer Learning Challenges in Machine Learning 7:

19.

Bengio, Yoshua, Aaron Courville, and Pascal Vincent. 2013. “Representation

Learning: A Review and New Perspectives.” Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on 35 (8). IEEE: 1798–1828.

Bengio, Yoshua, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.

“Curriculum Learning.” In Proceedings of the 26th Annual International Conference

on Machine Learning, 41–48. ACM.

Burda, Yuri, Roger Grosse, and Ruslan Salakhutdinov. 2015. “Importance Weighted

Autoencoders.” ArXiv Preprint ArXiv:1509.00519.

Cohen, Taco, and Max Welling. 2014. “Learning the Irreducible Representations

of Commutative Lie Groups.” ArXiv Preprint ArXiv:1402.4437.

Desjardins, Guillaume, Aaron Courville, and Yoshua Bengio. 2012. “Disentangling

Factors of Variation via Generative Entangling.” ArXiv Preprint ArXiv:1210.5474.

Dosovitskiy, A., J. Springenberg, and T. Brox. 2015. “Learning to Generate

Chairs with Convolutional Neural Networks.” ArXiv:1411.5928.

Erhan, Dumitru, Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2009.

57



“Visualizing Higher-Layer Features of a Deep Network.” Dept. IRO, Université de

Montréal, Tech. Rep 4323.

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. 2011. “Domain Adaptation

for Large-Scale Sentiment Classification: A Deep Learning Approach.” In Proceedings

of the 28th International Conference on Machine Learning (ICML-11), 513–20.

Goodfellow, Ian J, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Ben-

gio. 2013. “An Empirical Investigation of Catastrophic Forgeting in Gradient-Based

Neural Networks.” ArXiv Preprint ArXiv:1312.6211.

Graves, Alex, Greg Wayne, and Ivo Danihelka. 2014. “Neural Turing Machines.”

ArXiv Preprint ArXiv:1410.5401.

Hastad, Johan. 1986. “Almost Optimal Lower Bounds for Small Depth Circuits.”

In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,

6–20. ACM.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. “Delving Deep

into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification.”

ArXiv Preprint ArXiv:1502.01852.

Hinton, Geoffrey E, Alex Krizhevsky, and Sida D Wang. 2011. “Transforming

Auto-Encoders.” In Artificial Neural Networks and Machine Learning–ICANN 2011,

44–51. Springer.

Hinton, Geoffrey, Simon Osindero, and Yee-Whye Teh. 2006. “A Fast Learning

Algorithm for Deep Belief Nets.” Neural Computation 18 (7). MIT Press: 1527–54.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-Term Memory.”

Neural Computation 9 (8). MIT Press: 1735–80.

Jacobs, Robert A, Michael I Jordan, and Andrew G Barto. 1991. “Task Decom-

position Through Competition in a Modular Connectionist Architecture: The What

and Where Vision Tasks.” Cognitive Science 15 (2). Wiley Online Library: 219–50.

Jacobs, Robert A, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton.

1991. “Adaptive Mixtures of Local Experts.” Neural Computation 3 (1). MIT Press:

79–87.

Jaderberg, Max, Karen Simonyan, Andrew Zisserman, and others. 2015. “Spa-

58



tial Transformer Networks.” In Advances in Neural Information Processing Systems,

2008–16.

Kingma, Diederik P, and Max Welling. 2013. “Auto-Encoding Variational Bayes.”

ArXiv Preprint ArXiv:1312.6114.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012. “Imagenet Clas-

sification with Deep Convolutional Neural Networks.” In Advances in Neural Infor-

mation Processing Systems, 1097–1105.

Kulkarni, Tejas D, Pushmeet Kohli, Joshua B Tenenbaum, and Vikash Mans-

inghka. 2015. “Picture: A Probabilistic Programming Language for Scene Percep-

tion.” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 4390–9.

Kulkarni, Tejas D, Vikash K Mansinghka, Pushmeet Kohli, and Joshua B Tenen-

baum. 2014. “Inverse Graphics with Probabilistic CAD Models.” ArXiv Preprint

ArXiv:1407.1339.

Kulkarni, Tejas D, Ardavan Saeedi, and Samuel Gershman. 2014. “Variational

Particle Approximations.” ArXiv Preprint ArXiv:1402.5715.

Kulkarni, Tejas D, Will Whitney, Pushmeet Kohli, and Joshua B Tenenbaum.

2015. “Deep Convolutional Inverse Graphics Network.” ArXiv Preprint ArXiv:1503.03167.

LeCun, Yann, and Yoshua Bengio. 1995. “Convolutional Networks for Images,

Speech, and Time Series.” The Handbook of Brain Theory and Neural Networks

3361. Cambridge, MA: MIT Press.

Lee, Honglak, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. 2009. “Con-

volutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical

Representations.” In Proceedings of the 26th Annual International Conference on

Machine Learning, 609–16. ACM.

Liang, Percy, Michael I Jordan, and Dan Klein. 2010. “Learning Programs: A

Hierarchical Bayesian Approach.” In Proceedings of the 27th International Conference

on Machine Learning (ICML-10), 639–46.

Mahendran, Aravindh, and Andrea Vedaldi. 2014. “Understanding Deep Image

59



Representations by Inverting Them.” ArXiv Preprint ArXiv:1412.0035.

Mansimov, Elman, Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdi-

nov. 2015. “Generating Images from Captions with Attention.” ArXiv Preprint

ArXiv:1511.02793.

Mansinghka, Vikash, Tejas D Kulkarni, Yura N Perov, and Josh Tenenbaum.

2013. “Approximate Bayesian Image Interpretation Using Generative Probabilistic

Graphics Programs.” In Advances in Neural Information Processing Systems, 1520–

8.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, et al. 2015. “Human-Level Control Through Deep

Reinforcement Learning.” Nature 518 (7540). Nature Publishing Group: 529–33.

Mobahi, Hossein, and John W Fisher III. 2015. “A Theoretical Analysis of Opti-

mization by Gaussian Continuation.” In Twenty-Ninth AAAI Conference on Artificial

Intelligence.

Mottaghi, Roozbeh, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee,

Sanja Fidler, Raquel Urtasun, and Alan Yuille. 2014. “The Role of Context for

Object Detection and Semantic Segmentation in the Wild.” In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

Nair, Vinod, Josh Susskind, and Geoffrey E Hinton. 2008. “Analysis-by-Synthesis

by Learning to Invert Generative Black Boxes.” In Artificial Neural Networks-ICANN

2008, 971–81. Springer.

Neelakantan, Arvind, Quoc V Le, and Ilya Sutskever. 2015. “Neural Programmer:

Inducing Latent Programs with Gradient Descent.” ArXiv Preprint ArXiv:1511.04834.

Paysan, P., R. Knothe, B. Amberg, S. Romdhani, and T. Vetter. 2009. “A 3D

Face Model for Pose and Illumination Invariant Face Recognition.” Proceedings of the

6th IEEE International Conference on Advanced Video and Signal Based Surveillance

(AVSS) for Security, Safety and Monitoring in Smart Environments. Genova, Italy:

IEEE.

Radford, Alec, Luke Metz, and Soumith Chintala. 2015. “Unsupervised Represen-

tation Learning with Deep Convolutional Generative Adversarial Networks.” ArXiv

60



Preprint ArXiv:1511.06434.

Ranzato, M, Fu Jie Huang, Y-L Boureau, and Yann LeCun. 2007. “Unsupervised

Learning of Invariant Feature Hierarchies with Applications to Object Recognition.”

In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on,

1–8. IEEE.

Reed, Scott, and Nando de Freitas. 2015. “Neural Programmer-Interpreters.”

ArXiv Preprint ArXiv:1511.06279.

Salakhutdinov, Ruslan, and Geoffrey E Hinton. 2009. “Deep Boltzmann Ma-

chines.” In International Conference on Artificial Intelligence and Statistics, 448–55.

Sukhbaatar, Sainbayar, Jason Weston, Rob Fergus, and others. 2015. “End-to-

End Memory Networks.” In Advances in Neural Information Processing Systems,

2431–9.

Tang, Yichuan, Ruslan Salakhutdinov, and Geoffrey Hinton. 2012. “Deep Lam-

bertian Networks.” ArXiv Preprint ArXiv:1206.6445.

Tenenbaum, Joshua B, and William T Freeman. 2000. “Separating Style and

Content with Bilinear Models.” Neural Computation 12 (6). MIT Press: 1247–83.

Theis, Lucas, and Matthias Bethge. 2015. “Generative Image Modeling Using

Spatial LSTMs.” In Advances in Neural Information Processing Systems, 1918–26.

Tieleman, T., and G. Hinton. 2012. “Lecture 6.5 - Rmsprop, COURSERA: Neural

Networks for Machine Learning.”

Tieleman, Tijmen. 2014. “Optimizing Neural Networks That Generate Images.”

PhD thesis, University of Toronto.

Vincent, Pascal, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-

Antoine Manzagol. 2010. “Stacked Denoising Autoencoders: Learning Useful Rep-

resentations in a Deep Network with a Local Denoising Criterion.” The Journal of

Machine Learning Research 11. JMLR. org: 3371–3408.

Williams, Ronald J. 1992. “Simple Statistical Gradient-Following Algorithms for

Connectionist Reinforcement Learning.” Machine Learning 8 (3-4). Springer: 229–

56.

Yang, Jimei, Scott E Reed, Ming-Hsuan Yang, and Honglak Lee. 2015. “Weakly-

61



Supervised Disentangling with Recurrent Transformations for 3d View Synthesis.” In

Advances in Neural Information Processing Systems, 1099–1107.

Yosinski, Jason, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. “How Trans-

ferable Are Features in Deep Neural Networks?” In Advances in Neural Information

Processing Systems, 3320–8.

Zaremba, Wojciech, and Ilya Sutskever. 2014. “Learning to Execute.” ArXiv

Preprint ArXiv:1410.4615.

———. 2015. “Reinforcement Learning Neural Turing Machines.” ArXiv Preprint

ArXiv:1505.00521.

Zaremba, Wojciech, Tomas Mikolov, Armand Joulin, and Rob Fergus. 2015.

“Learning Simple Algorithms from Examples.” ArXiv Preprint ArXiv:1511.07275.

Zeiler, Matthew D, and Rob Fergus. 2014. “Visualizing and Understanding Con-

volutional Networks.” In Computer Vision–ECCV 2014, 818–33. Springer.

62


	1 Introduction
	1.1 Document overview

	2 Desiderata for representations
	2.1 Disentangled
	2.2 Interpretable
	2.3 Performant
	2.4 Reusable
	2.5 Compact

	3 Disentanglement in Vision
	3.1 Introduction
	3.2 Related Work
	3.3 Model
	3.3.1 Training with Specific Transformations
	3.3.2 Invariance Targeting

	3.4 Experiments
	3.4.1 3D Face Dataset
	3.4.2 Comparison with Entangled Representations
	3.4.3 Chair Dataset


	4 Disentanglement in Computation
	4.1 Introduction
	4.1.1 Catastrophic forgetting

	4.2 Related Work
	4.3 Controller-function networks
	4.3.1 Relationship to mixture of experts
	4.3.2 Hard and soft decisions
	4.3.3 Continuation methods
	4.3.4 Training with noisy decisions

	4.4 Experiments
	4.4.1 Disentanglement of functions
	4.4.2 Catastrophic forgetting


	5 Discussion
	5.1 DC-IGN
	5.1.1 Future work

	5.2 Controller-function networks
	5.2.1 Future work

	5.3 Unification

	References

